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Chapter  0
An introduction2 to statistics with origami
ORIGANOVA

In  these  few  pages  I  would  like  to  tell  you  something  about
numbers  and statistics,  and I  would like to do this  playing with
paper.
 
Origami is the Japanese word that describes the activity of folding
paper.  ANOVA stands  for  ANalysis  Of  VAriance  which  is  an
important, sophisticated tool used in statistical analyses. From these
two words  comes the unusual  title,  Origanova,  that  explains the
slightly  crazy  idea  of  using  origami  to  explain  some  important
concepts in statistics such as mean, variance and inference.

No particular  specialist  knowledge  is  required  to  use  this  book,
however, it is essential to have to hand a few sheets of A4 paper
and a few sheets of paper that are about 10 cm square. Sheets of
paper  of  A4  size  are  those  commonly  used  in  photocopiers  in
Europe (210 mm x 297 mm; 8.27 inches x 11.69 inches; weighing
80 g /square metre). If you are in the US you can find A4 sheets in
specialist  shops,  or you can cut  them from "legal"  format  paper
(216 mm x 356 mm; 8 ½ inches x 14 inches). In fact, for some
folds also "letter" format paper (216 mm x 279 mm; 8 ½ inches x
11inches) is fine. The square sheets of paper can be found in toy
shops or in stationery shops and are described as origami paper.
Otherwise, the coloured blocks of paper that are used for making
notes are fine to use, as long as they are exactly square. If you have
a choice,  pick paper that is a bit  thicker than photocopier paper.
You will also need a ruler or a set square, a pencil, a rubber, and
either scissors or a utility knife.
In  this  version  of  Origanova,  in  addition  to  a  new  layout  and
numerous corrections, I decided to use the US and English notation
for  numbers;  using  a  dot  rather  than  a  comma  for  decimals.
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However, I decided to keep the measurements in millimetres and
grams. This version also contains a couple of additional chapters
(to be precise one chapter and a pair of appendices) and designs
that are a little more beautiful.  I hope that you will find it easier to
make the folds.
Speaking to some readers of the previous version, I realized that
one "flaw" of the book is that it is full of concepts. I do not think I
can eliminate this problem, not least because it reflects my way of
working.  I prefer to have only a few pages to study, even if this
forces  me  to  go  slowly  in  my reading  and  to  retrace  my steps
occasionally  to  remind  myself  of  something,  or  to  find  links
between the concepts. I hope that this style is not too annoying.
Another  novelty  is  that  I  decided  to  include  examples  of
calculations using a "real" statistics programme, called R. This is a
free, but very very powerful and versatile programme, that goes far
beyond the needs of this  book. Consequently I  do not  intend to
explain exhaustively how to use R; for our purposes we will use R
simply as a "super calculator".
When you start the program a window like the one below, called
console,  will  appear  on  the  screen.  The  screen  may be  slightly
different depending on your operating system. 

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright  (C)  2013  The  R  Foundation  for  Statistical
Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>
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Next to the cursor there is a "prompt" represented by the character
">". If you want to use R in conjunction with this book you simply
need to copy the words written in Courier font in the book and put
them next to the prompt in R and then press Enter. For example if
you want to calculate 1 plus 1 write 1 + 1 next to the prompt > in
this way:

>1+1

Pressing enter you get the following:

[1] 2
>

That is to say, the result. The result is preceded by [1] because R
notifies you that, in this case, the result consists of a single number.
After this R goes back to the beginning and shows the " prompt" as
if it is saying: "I am ready for another question".
I forgot to mention; you can find R and additional packages on
CRAN (Comprehensive R Archive Network), which can be found
at the following internet address:

http://cran.r-project.org/

where there is also a lot of information, as well  as manuals and
examples.
My laziness makes it easy for me to accommodate people who are
similar to me. So I have prepared a file with all the functions ready
to  use.  R  calls  this  type  of  file  "script"  .  You  can  open  the
origanova.R script file using the Open Script command which can
be found in the R Files menu. Then highlight the function you want
to  use and copy it  with  a  "  copy and paste"  command into the
console window.
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In R for Windows you run the highlighted part of the script simply
by pressing Ctrl + r. I do not know what command is required with
R for Mac or Linux; there will be an equivalent command but you
will have to find it out for yourself. In fact it is easier to do than to
explain. Try it yourself; you won’t break anything.

In the script , the character  # defines comments : everything that
follows this character until the end of the line will not be executed.

One  last  point:  in  the  script  before  a  chart,  you  will  find  the
command:

win.graph()

that puts the graph in a new window. This enables you to save the
previous graphs and to compare them. For the sake of simplicity,
this command has been omitted from the text of this book.

If you think that sooner or later you might have to use statistics, the
effort involved in learning to use a statistics software will be much
rewarded. In this case, it will probably be very handy to know that
the character ? is used to get help with R. So, for example, if you
write 
?mean

in  the  console,  R  will  tell  you  everything  about  the  function
mean().  In this book we will use many functions, but we will not
stop to analyse all the possible options offered by each of them .
Therefore it might be useful to use the help function to find out
what else they have to offer.
If none of this interests you, don’t worry; you can safely ignore the
R commands and just look at the results.

So let's start!
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Chapter 1
A paper computer

Statistic is a practical tool , created to manipulate numbers for prac-
tical purposes. But we can also use statistics to play, by creating an 
imaginary situation, rather like a fairy tale.

Once upon a time there was a man who made sweets. Having pre-
pared sweets of many different colours he put the sweets into a ma-
chine that put them into bags. The packaging machine was a little 
old and rather imprecise. Whereas sometimes the bags were com-
pletely full, at other times they were half-empty and the children 
who received those bags complained. In order to understand what 
was happening with his packaging machine the man took all the 
bags of sweets  that were in stock and weighed them one by one on 
the scales. The first weighed 2 kg, the second 3 kg, and so on. Here 
are the weights of all the bags.

2 3 3 5 2 3 3 2 2 3 2 3 1 2 3 3 4 3 4 2 4 3 1 5 1 3 1 2 2 2 4 3 2 2 4 3 5 3 2 1 4 3 2
3 2 3 1 4 5 1 1 3 3 1 2 2 1 4 3 2 2 2 2 2 3 4 2 2 2 1 2 2 3 2 2 3 4 1 2 3 3 4 2 2 2 1
3 3 1 4 1 2 1 2 1 2 2 4 2 2

Do you think there too many bags? Well then, let's take just the first
5 bags:

2 3 3 5 2

We could pretend that Gervase had a very small stock of sweets. I 
told you that the manufacturer of the sweets was called Gervase, 
didn’t I? I didn’t? Well, I have told you now.

To represent  a  kilogram I  have decided to  use a  classic  fold in
traditional origami: the masu. Originally, the masu was a container
that was used as a unit of measurement in Japan. So let’s begin to
make some little masu. Maybe you can get a few friends to help. 

8



On the following pages  you will  find an explanation  of  how to
make a  masu.  The drawings will  become clearer  if  you bear  in
mind that all over the world standard symbols are used to describe
origami folds.  In addition, let  me remind you to be accurate in
making  the  folds  and,  after  folding  the  paper,  to  go  along  the
creases with the back of your finger nail.
Here are the most common basic symbols and folds.
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The masu can be used as a container or, turned upside down, can be
used like a building block to make things. It is interesting to note
that the length of each side of the masu is equal to the length of the
sheet of paper we started with, multiplied by the square root of 2,
and then divided by 4. 
This will be evident if you re-open a masu and look carefully at the
creases,  especially if  you remember that  √2 is  the length of  the
diagonal of a square of length 1. 
So, if you have used a sheet of paper that is 10 cm by 10 cm  of the
masu will be: 10×√2≈14.1 and 14.1÷4≈3.5

i.e. approximately 3.5 cm by 3.5 cm. 
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Of  course,  if  you  want  to  know  the
exact value we can get our friend R to
help, by typing:

> 10*sqrt(2)/4
[1] 3.535534

As already mentioned, what is written
after the symbol " > " is typed into the
"console" R. The result is shown in the
line  below,  and  is  preceded  by  [1]
because,  in  this  case,  the  result  is
composed of a single number. 
Returning to our game with paper; how many masu do we have to
make? Let’s see…
2 to represent the first bag of sweets;
plus 3 for the second bag of sweets;
plus 3 for the third bag of sweets;
plus 5 for ...
Are you already fed up? Then I’ll show you a trick. Let’s make
only 5 masu and put them in a row so we can measure how long
they are. The length is a bit more than 17.5 cm:
 3.5 x 5 = 17.5
This is because earlier we had rounded the numbers a little, and
because the folds take up some space. But, it does not matter; the
important thing is that the total length is less than the short side of
an A4 sheet of  paper (i.e. less than 21 cm). For this reason the
sheets  of  paper  used  to  make the  masu should  be  about  10  cm
square.
Now we take a sheet of A4 paper (or letter format paper) and fold it
in half  nd then we make a fold that is a bit less than the height of
one of the masu like this:.

Now I need someone to do a calculation. The A4 sheet of paper, as
we have said, should have a short side of about 21cm (for letter
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paper it is 22 cm) . Subtract from this length the length of the 5
masu. Divide the result by 2 and mark this distance on each edge of
the folded paper. Then divide the middle section into 5 equal parts
and number them from 1 to 5, as though you are making a ruler. 
We can say that a masu placed in position 1 is worth 1 kg, a masu
placed in position 2 is worth 2 kg and so on. This is not an unusual
thing;  in  basic arithmetic  we  make  use  of  positional  numbers
(based on position). For example, with the number 371, a 3 in the
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position of the hundreds is worth three hundred, a 7 in the position
of the tens is worth seventy and a single unit is worth 1.
Let’s go back to what we were building. In order to hold the masu 
in position and to give the structure more strength it is better to 
make the following folds.

With  the  5  masu  we can  represent  all  the  stock  of  Gervase  by
arranging them in the following way :
• 2 masu for the two bags of 2 kg;
• 2 masu for the two bags of 3 kg; and
• 1 masu for the one bag of 5 kg. 

This method of representing the data is called a histogram. Using
the masu you have built, you can enjoy yourself representing other
sets of numbers. A histogram can be made with masu, or you can
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draw it on paper; but usually it is easier to get a computer to draw it
for you. 

For example, with our friend R you just have to type:

>hist(c(2,3,3,5,2),breaks=0:6,density=20)

Let me say a quick word about the
seemingly  mysterious  c,  which
appears in the expression above . It
is part of the command c() that asks
R  to  link  everything  that  is  in
brackets (separated by a comma) in
order  to  create  a  single  object;  an
object  that  mathematicians  call  a
vector.  We  will  talk  about  the
concept of vectors in Chapter 9.

Please  ignore,  at  the  moment,  the
meaning of the options  breaks e  density;  if  you are curious  I
remember you that you can ask it to R just typing

?hist

What I would like to tell you is that a histogram has a number of
very interesting features. First, you will have already noticed that in
order to save time in our small example the 5 masu represent 15.
Indeed, in a bigger problem we could use a masu to represent a
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hundred sacks of flour, a thousand camels, and much more. In this
way the data are summarized, so you can see at a glance how they
are organized.

Now  try  to  find  the  point  of  equilibrium of  the  histogram that
represents the sweet stock of Gervase. It can be done in two ways.
First, you can put a round pencil under the structure and roll it to
the  left  and  to  the  right  until  you  find  the  point  at  which  the
histogram balances.

Alternatively, we can do this fold (which also serves as the roof of
a masu house if you want to play at building things) and use it as a
fulcrum. The fold  come from a beautiful book called " Origami
Omnibus ", written by Kuniko Kasahara (see reference [ 1 ] ) 
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Have you found the point of equilibrium? Also here it is not easy;
we have to  be satisfied with an  approximate  solution,  but  that's
okay. It seems to me that the point of equilibrium is the number 3
on the scale that we wrote on the paper.  This is the average of the
weights of the bags of sweets.
Maybe some of you already knew what the average was;  probably

you had been taught to calculate it by adding together the weights
of the bags and dividing by the number of bags, like this:
23352÷5=3

It is no coincidence that it is the same number; because the average
is really the centre of gravity of the histogram.
Think back to the diagram on page 13, and let's write it in a more
orderly way: 

Weight (kg) Number of bags Welght x Number

1 0 0

2 2 4

3 2 6

4 0 0

5 1 5

Total 5 15
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So, in  more general  terms,  the arithmetic  mean is  calculated by
dividing  the  number  at  the  bottom of  the  third  column  by  the
number at the bottom of the second column:

15÷5=3

In other words, it multiplies the value of each observation by the
number of times it occurs. All of these products are added together
and then divided by the number of observations. This is equivalent
to:

23352÷5=3

But be careful not to get confused. Sometimes the number of times
that an observation occurs is called its  weight. In our example, it
just so happens that the observations represent weights (physical
weights,  being  the  bags  of  sweets),  and  are  multiplied  by  the
weights (mathematical weights, being the number of occurrences).

Returning to our folded paper, perhaps you noticed that we have
built  a  machine  that  calculates  averages!  A paper  computer  that
calculates  averages  and  works  without  batteries!  Just  put  in  the
masu, make a histogram, find the point of equilibrium, and then use
the scale to read off the average.
 
What is that you said? It only works with numbers ranging from 0
to 5.  Well, all computers have their limits. My computer (which
cost a lot of money and consumes a lot of energy) is not able to
calculate the difference between 10 to the power 308 and 10 to the
power 308 minus 1. We can also ask R the same question. To ask if
two things are equal the symbol " = " should be repeated twice
otherwise R thinks that we want to assign what is to the left of the
symbol " = " to the result of calculation to the right of " = " 

> (10^308)==(10^308-1)
[1] TRUE
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So, also R is unable to calculate the difference between 10 to the
power 308 and 10 to the power 308 minus 1. 

Anyway, to handle larger numbers of masu we just need to build
smaller masu. Alternatively, we can use a larger sheet of paper (or
use the A4 sheet of paper folded the other way round). 

But in fact our machine seems to have another limitation; it only
works with whole numbers. This is an interesting observation; it is
true that in theory all that is necessary is to build smaller masu. But
just think; if Gervase’s scales had weighed the bags in grams rather
than kilograms we would have had to make masu that were one-
thousandth of the size of those that we made, and I can guarantee
that making a masu with a sheet of paper that is  one-tenth of a
millimetre wide is rather difficult.

However,  I  remind  you  that  it  is  just  coincidence  that  in  our
example  one  masu  equalled  1  kg.  Nothing  prevents  us  from
representing the following set of numbers in a histogram:

138 113 134 195 87 70 75 195 91 116 145 126 174 149 131 83 53
138 173 163 104 129 121 51 144 50 72 76 194 137 112 136 96 146
142 131 135 132 113 132 69 102 76 137 167 83 60 103 118 120 52
69 149 56 52 161 83 158 153 136

in this way:
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It is easier to understand how to do this if we start by putting the
numbers  in  ascending  order.  It  is  not  essential,  it  just  makes  it
easier to demonstrate the idea.

50 51 52 52 53 56 60 69 69 70 72 75 76 76 83 83 83 87 91 96 
102 103 104 112 113 113 116 118 120 121 126 129 131 131 132
132 134 135 136 136 137 137 138 138 142 144 145 146 149 149 
153 158 161 163 167 173 174 194 195 195

If we subtract the smallest number from the largest number we get
the range. 

195 – 50 = 145

Now we have to decide how many groups to divide the ranges into.
There are several rules of thumb,  such as the table below:

less than 30 observations - the histogram needs just a few groups
less than 100 observations – a maximum of 8 groups
from 101 to 250 observations – a maximum of 10 groups
from 251 to 1000 observations – a maximum of 12 groups

In the example I have decided to use four groups (one of which is
empty). Please note that the limits of the groups have to be chosen
so as to leave no ambiguity in the assignment of the observations to
the  groups.  I  have  also  decided  to  use  one  masu  for  every  10
observations  in  the  group.  Okay,  I  cheated;  the  number  of
observations for each group is exactly divisible by 10 in order to
avoid  cutting  a  masu in  half.   However,  remember  that  I  could
always decide that a masu is worth 3, 13, or some other number of
observations.

Also in the appendix there is a reference to a cube model , which is
the height of 2 masu and made with two sheets of paper (it weighs
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the same as 2 masu). Combining cubes and masu you can make the
system even more flexible.

For  example,  this  is  how  we  could  work  with  the  30  decimal
numbers shown below:

> x<- c( 4.37348,19.2912,20.7221,12.1345,14.8025,
+ 22.2741, 12.2369,15.5669,18.0976, 17.748,
+  14.5603,13.6388, 8.89321, 12.5463,15.3694,
+  17.5275,13.7957,19.9823,14.256,15.1928,11.2705,
+  20.9492,14.1695,23.5501,14.5677,15.3169,10.7054,
+  14.4311, 16.1116,13.4388)

> summary(x)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  4.373  13.490  14.690  15.250  17.690  23.550 

Highest  value  =   4.37348  Lowest  value  =    23.5501  Range  =
19,1766

They could  be  represented  in  a  masu histogram using  these  six
groups:

1 From 4.0 to 7.5  1 observation 1 masu
2 From 7.51 to 11.0  2 observations 1 cube
3 From 11.01 to 14.5  10 observations 5 cubes
4 From 14.51 to 18.0  10 observations 5 cubes
5 From 18.01 to 21.5    5 observations 2 cubes + 1 masu
6  From 21.51 to 23.55  2 observations 1 cube

Or we can get R to draw a histogram:
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hist(x,density=20)

Now if we change the class num- ber, the histogram becomes like 
this:

> hist(x,nclass=10,density=20)

But it's different! Yes and if we force R to plot the Y scale from 0 to
25 , with the option 

ylim=...
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it become like like this:

hist(x,nclass=10,ylim=c(0,25),density=20)

I would ask you to take a few minutes to compare the shapes of the
graphs; they look different yet they represent the same set of data.

At  this  point  I  hope  to  make  you  understand  that  it  is  very
important when making a histogram to decide carefully about the
number  of  groups  and  the  scales  of  the  axes.  This  is  a  very
important rule, not only when you make a graph , but also when
you look at a chart done by others; pay attention to the scales. 

22



Chapter 2
Measuring dispersion

Going  back  to  our  friend,  Gervase.  He  discovered  that  his
packaging machine was producing bags of sweets that weighed an
average of 3 kg each.  At this point, I hear the familiar comment:
"Statistics just tell us lies; if one man eats a whole chicken while
another man eats nothing, in terms of statistics they have eaten half
a  chicken  each".  This  comment,  in  addition  to  being  old  (it  is
attributed to Trilussa, 1871- 1950), is also wrong. The mean is, in
fact, half a chicken each, but statistics is not just about the mean.
Returning to the example of Gervase’s stock; the story tells us that
after a while the bags of sweets were sold, and that it was children
who came to buy them. It is true that the bags weighed an average
of  3  kg,  but  go  and  tell  that  to  the  two  children  who  had  the
misfortune to get bags of sweets weighing only 2 kg. I guarantee
that they were pretty disappointed, especially when the child who
happened to get the 5 kg bag, a chubby child who later had many
problems with his teeth, began making fun of them. In any event
Gervase was very upset by the situation.

So we need to invent a way to calculate how the weights of the
bags are dispersed in relation to the average weight. To do this we
could calculate how much each value deviates from the mean. Of
course, we can ask R to help us.

> (d<-c(3,3,3,3,3)-c(2,3,3,5,2))
[1]  1  0  0 -2  1

One of the convenient things about computers is that you can let
them do all the repetitive tasks. But here I exaggerated and I did a
few things all together in a single line. As I have already mentioned
the function c() asks R to link everything that is in brackets in
order to create a single object called a vector. Then I asked R to do
the subtraction with the usual symbol " - " between the two vectors.
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3 3 3 3 3
and 
2 3 3 5 2

Then  I  put  the  result  in  a  variable  that  I  called  "d"  using  the
operator " arrow " which I got by using the symbols " < " and " - ".
Finally,  I  kindly asked R to  display the  result  by enclosing  the
entire expression in brackets.

But, in fact, I could have written it in a simpler way, as follows:
 
> (d<-3-c(2,3,3,5,2))
[1]  1  0  0 -2  1

In this case R "understands " that if I ask him to subtract the vector
2 3 3 5 3 2 from single number, it means that I expect him to do 5
subtractions, as in the previous example.

That is:

3 – 2 = 1
3 – 3 = 0
3 – 3 = 0
3 – 5 = - 2
3 – 2 = 1

Now we calculate the average of these results. To do this I have
stored the result of the 5 subtractions in the variable d.
> mean(d)
[1] 0

Well, look at that! It’s zero!
It is always zero whatever numbers you choose.

If you think about it for a moment it is obvious. The numbers are a
bit larger and a bit smaller than the average, in a way that is exactly
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balanced. You will remember that the average is simply the centre
of gravity.

Now a mathematical formula that always gives a result of zero is of
little use. So, to get something more interesting we could square the
differences: a square is never negative (except for the imaginary
number i, the square of which is -1).

Here it is:
 
> sum(d^2)/4
[1] 1.5

You made a mistake! someone will say; you divided by 4 when you
should have divided by 5, because there were 5 bags. It was not a
mistake, we need to divide by the number of observations minus 1,
and to complicate life even more the result of this calculation (n -
1) is given the grand name degrees of freedom. To find out why you
have to be patient for a few pages; I'll explain it in chapter 9. For
the moment just trust me. The number that we calculated is called
the variance.

The sum of the squared deviations from the mean is also called the
deviance. So variance = deviation / degrees of freedom (I have set
out  all  the  formulas  using  normal  mathematical  notation  in
Appendix I).

So Gervase discovered that his machine packed bags that weighed
an average of 3 kg, with a variance of 1.5 kg2 . Kilograms squared?
Yes, having squared the differences we now find ourselves with the
kilograms  squared.  But  what  is  a  kilogram squared?  Do  sweets
squared taste better? (Don’t get me confused: sweets squared are
not necessarily square sweets). However, we simply do not know if
sweets squared are better. But to make our life easier we can take
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the  square  root  of  the  variance  and  thus  find  a  measure  of
dispersion with the same units as we started with.

> sqrt(sum(d^2)/4)
[1] 1.224745
 
To calculate the square root with R using the sqrt() function. You
will certainly have already noticed that R uses the symbol " ^ " to
calculate powers.

What  we  have  calculated  is  called  standard  deviation,  and,  of
course,  can  be  calculated  directly  with  R by using  the  function
sd() .

> sd(c(2,3,3,5,2))
[1] 1.224745

Gervase says: "Okay the bags weigh an average of 3 kg, but the
dispersion is high; the standard deviation is 1.2 kg, nearly half of
the  average  weight.  The packaging machine  is  completely worn
out! 
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Chapter 3
Measures of position, dispersion and association 

The average is a measure of position because it tells us where the
histogram is positioned, while the standard deviation is a measure
of  dispersion. There  are many  other measures of position and
dispersion;  to get to know some of them let’s go back  to playing
with paper.  In the  bibliography [5]  there  is  a  book by  Nick
Robinson from which I took the fold for this little dog.

Now  please watch carefully; this  fold is  very elegant  in  its
simplicity. It is better if you use origami paper which is coloured on
one side, starting with the coloured side down. If you want you can
add some details with a pen, as in the drawing. 
This fold has a special characteristic: the first and the last steps do
not have any precise reference points,  instead the decision about
where to make the folds is left to the aesthetic sense of the person
who is doing the folding.  This is not uncommon in origami; art
cannot be bound by rules that are too rigid. On the contrary, maybe
the essence of  aesthetics lies in finding the right balance between
freedom and constraints.
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But leave aside the philosophy and return
to our little dog. Try to make a few copies,
say about fifteen, varying the first and the
last fold. It is fun to see how it changes
the end result.  As it   is  a simple fold it
should not take you too long to create a
few. 

Maybe you have already noticed that there are three variables (four
if we take into account the size of the paper ). I have shown them in
the figure below with the letters Si (size) ,  Ta ( height in italian is
“taglia”)  and  (alpha). Reopen a puppy and look at the folds: Si
depends on where you made the first fold while Ta and describe
where and how you bent the head of the dog in step 5. (According
to Nick Robinson if  exceeds 90° the dog becomes a mammoth).

It  is  fascinating  to  think  that  three
numbers  can  fully  describe  the
"biometrics" of our little dog. It is as
if  we were creating a new breed of
dog, and we had the good fortune to
be able to model the whole anatomy
with just three numbers. This brings
to  mind  many  more  games  and
experiments,  but  I  don’t  want  to
digress. Now I would like to focus on
one of the three variables: the one in
the drawing which is named Ta (the height of the dog) . It is as if
we  had  "caught  "  a  dozen  examples  of  our  new  breed  (Canis
Origamicus)  and now we  want  to  study them or  describe  them
based on size alone.
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If you stand your dogs next to
each  other,  it  should  not  be
too  difficult  to  sort  them by
height,  as  shown  in  the
diagram.

Now it is easy to identify the
dog in the middle (number 8),
the one  for  which  7 puppies
are smaller and 7 puppies are larger. The size of this little dog is the
median of our sample. Of course someone will protest at this point:
I did 14 dogs and there is not a little dog "in the middle". It is true
when I  said "about  fifteen"  I  did not  mean an exact  number of
examples. However, it isn’t a problem if there are an even number
of dogs; just measure the 2 dogs "in the middle" (in the case of 14
examples use the seventh and the eighth), add the values and divide
by 2. In other words, the median of our sample in this case is the
average of the two middle values.

The median is a nice way to describe the position of our collection
of observations without doing lots of calculations. Yes, you guessed
it,  the  median  is  another  index  of  position,  just  like  the  mean.
Moreover, if we had wanted to calculate the mean height of our
sample, we would have had to have measured all the dogs, while
the median for a sample, no matter what the size, requires just one
or two measurements.
Remember , however, that measuring only the position of a sample
exposes us to the risk of a blunder (if one man eats a chicken, while
another man eats nothing ... ) 

Let’s go on. The median divides a sample into two groups: one half
" small" and the other half "large". But nothing prevents us from
taking each of the two groups and repeating the process by dividing
each half into two quarters. The size of the dog that separates the
two halves into quarters is called the  quartile.  The  first quartile
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separates the quarter of the dogs that  are  “very small"  from the
three quarters of the dogs that are big. The third quartile separates
the quarter of the dogs that are large from the three quarters that are
small.  And the  second quartile? It is just another way (not often
used) to refer to the median.

If we calculate the difference between the 3rd and 1st quartile we
get the interquartile range. The range , as we had already seen in
chapter 1, is the difference between the tallest dog and the shortest
dog.  Range  and  interquartile  range  are  two  other  measures  of
dispersion, like standard deviation.

In some cases , especially when the sample is very large, it is better
to divide the sample into 100 parts rather than 4 parts. The values 
that mark these parts are called  percentiles. I was thinking that to
illustrate this concept  it  would be necessary to fold 200 or 300
dogs, to arrange them by height and to measure the size of those
that ... .
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But, perhaps you can just imagine the situation without bothering
to make all those dogs.  Let’s just look at a few examples; the 3rd
percentile is the value that separates the smallest 3 per cent of the
observations  from the   largest  97%;   the  50th  percentile  is  the
median; the 90th percentile indicates the value that is exceeded by
only 10 % of the samples; and so on. 

There is a very elegant way to represent median and quartiles of a
collection of numbers: the box-and-whisker plot. It  is easy to do
with R. Here are the heights of 15 dogs that I made using sheets of
paper that were 95 mm square.
 
Ta<-c(52,52,60,59,50,55,57,57,57,56,52,57,55,54,51)

With this  simple  command
we can create the graph.

> boxplot(Ta)

The box represents the first
and the third quartile (so the
box  contains  50%  of  the
observations).  The  line
within  the  box  is  the
median, while the whiskers
extend  from  the  minimum
value  to  the  maximum
value.

Now, let's imagine there is a another dog, the sixteenth, that is 100
mm high. I know it is impossible to make a dog so high with paper
that  is  only 95 mm high,  but do what  my little  cousin did.  She
desperately wanted to play with me so she made a dog with a sheet
of her own paper... so, add it to the data set and redo the chart.
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> Ta<-c(Ta,100)

> boxplot(Ta)

There is  one difference:  the "
abnormal " value is reported as
a single dot, separate from the
whisker.  But  how  did  R
understand  that  the  little  dog
had  been  folded  my  little
cousin?

He did not " get it" , for reasons that you will be able to understand
from the things that we will look at in the next chapter.
It is very unlikely that such a high value would be found by chance
in a group like ours. So the rule is that the whisker cannot extend
beyond the median more than one and a half times the interquartile
range. Any values beyond this limit are represented as isolated dots.

We have seen some indices of position and dispersion. There are
also  indices  of  association.  In  fact,  sometimes  it  helps  to  have
something that will show us if,  when one measure varies maybe
there is another one that varies in a similar way  Let me explain this
with an example. When making nougat, the mixture of sugar and
almonds  passes  between  two  cylinders,  and  then  the  strip  that
comes  out  is  cut  into  individual  pieces.  It  is  likely to  be  more
convenient to check the weight of the pieces of  nougat rather than
their length, because the ruler sticks to the nougat so it is tedious
taking the measurements (don’t lick the ruler please!).

It is reasonable to think that, if the cross section of the nougat is
constant, there is a relationship between the length and the weight
of the nougat. This relationship may not be completely accurate; for
example,  it  depends  on  how  many  almonds  happen  to  be  in  a
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particular  piece  of  nougat.  Using  statistics  we  can  evaluate  the
relationship between the weight and the length of a piece of nougat.
For example, we can calculate what percentage of the variations in
the length can be explained by variations in the weight. This is a
measure of association and is generally denoted by the symbol R2.

Another measure of association is the correlation coefficient, also
called "r"; a number that is equal to 0 when the two variables are
not associated in any way; equal to 1 when given one measure we
can obtain the exact value of the other measure, and that as one
measure increases, so the other measure increases; and equal to -1
when one measure increases and the other measure decreases, again
with an exact mathematical relationship.

Lovers of formulas can find the formula to calculate r set out in
Appendix D, a formula that makes use of another association index,
the covariance.

It is not difficult to get help from R to graphically display these
things.
With the four commands in the next page we can create a variable
x1 containing the integers from 1 to 20. Then we can create another
variable y2 by taking x1 and multiplying by 1.2 and adding 7. The
graph of the variables is shown, and below is the calculation of the
correlation coefficient. This is exactly equal to 1 since it is obtained
from x1 and y1 according to an exact calculation: the two variables
are perfectly correlated. 
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> x1<-1:20
> y1<-1.2*x1+7

> plot(x1,y1)
> cor(x1,y1)
[1] 1

Second example. This time
with the function rnorm()
we can create two vectors
with  20  random  numbers
in  each.  If  we  create  the
graph  and  calculate  the
correlation coefficient this
time  the  result  is  a  very
low number.  You can  see
from  the  graph  how  the
points are distributed. 
 
> x2<-rnorm(20)
> y2<-rnorm(20)

> plot(x2,y2)
> cor(x2,y2)
[1] -0.08660972

Note  that,  given  the  way  these  commands  are  written,  R  will
generate  different  random numbers  every  time  the  command  is
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executed, so your chart and the r value may be different from those
shown.  

Third example. This time we take x1 and y1again, but to y1 we add
a small amount of "randomness" (for now don’t worry about how
we do it)

>y3<-y1+rnorm(20,mean=0,sd=0.5)

> plot(x1,y3)
> cor(x1,y3)
[1] 0.9975803

This  time  the  correlation
coefficient  is  no  longer  1,
but  it  is  still  quite  a  high
value  and  the  dots  on  the
graph  are  fairly  well
aligned,  although  not
perfectly.

If  you  want  to  explore  this  branch  of  statistics  in  more  detail,
maybe you could try to see if there is any association between the
values of Ta, Si and  for the puppies that you folded, but we will
leave this for another story.
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Chapter 4
Statistical distributions
(infinite masu)

You will  certainly remember  that,  to  simplify our  lives,  we had
imagined  that  Gervase’s  warehouse  contained  only  5  bags  of
sweets.  But  I  like  to  work  with  very  large  quantities,  so  let’s
imagine that you have the weight in grams of all bags of sweets
that Gervase’s machine ever produced, and of all the bags it will
produce  in  the  future.  In  fact,  I  want  to  spoil  myself,  so  let’s
imagine the infinite number of bags already produced and  to be
produced in the future, all weighed with absolute precision, then we
can make a histogram. It is impossible, you say; to make infinite
numbers  of  masu  will  take  an  infinite  amount  of  time  and  an
infinite amount of patience. So, before I wear out your patience, I
will  do a little trick. Let's go back to playing with paper: if we take
an A4 sheet of paper and cut it in half we get 2 sheets of A5 size
paper.

An interesting feature of the paper we use to make photocopies in
Europe (size UNI) is that the long side is as long as the short side
multiplied by 2 ( I know it is not nice to express it in this way, but
it does not matter) . It would be like saying that the short side is
equal  to  the  side  of  the  square  of
which the long side is the diagonal
(it  is  a  bit  of  a  tongue  twister).
However,   the  interesting  thing  is
that, by dividing a sheet as we did
the  proportions  are  exactly  the
same. So each of the  A5 sheets of
paper  has  the  same proportions  as
the  original  A4  sheet:  they  are
similar rectangles.
In fact, for what we are doing in this chapter it is not important that
the sides are in the proportion 1 ÷ √2. So, if you don’t have any A4

36



paper to hand, you can use "letter" format paper cut in half, but the
nerd in me could not avoid babbling about √2. Take the A5 sheet of
paper (or half-sheet of  letter paper) and fold it like this:

Then cut along the line a-a keeping the small strip of paper to one
side and continue the folding. Finally, insert the strip of paper that
you put to one side into the two pockets b  b1. Then you have to
turn the model so that you can look at it from the side.

Now look at the profile of the strip of paper. It  shows a special
curve which is very important in statistics and defines exactly the
form of  the histogram that  we wanted to  create  with an infinite
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number of infinitely small masu. Not bad eh ? Just like that: 2 cuts
and  3  folds,  instead  of  an  endless  number  of  masu  made  with
infinitely small sheets of paper.
A lot of work saved; I can almost feel your gratitude.

In fact, there are some things to clarify. The curve we have created
shows the distribution of an infinite number of masu if Gervase’s
battered old packaging machine continued  to make errors in the
normal way. What does it mean when we say “make errors in the
normal way”? Let's say that "normal" mistakes are those that occur
in a totally random way. This is regardless of where the mistakes
take  place:  they  could  be  "mistakes"  made  by  the  packaging
machine  or  errors  in  the  measuring  instrument,  but  they  must
always be random, so that there is nothing that alters the values in a
systematic way.

For  example,   the  distribution  is  symmetric,  which  means  that
Gervase is honest. In fact, try to move the extreme right of the strip
a little bit like this: 

38



We  get  a  different  distribution;   an  asymmetric  (skewed)
distribution.  This  would  occur  if  Gervase,  occasionally realizing
that a bag was too full, took that bag away from the warehouse, but
he only took away bags that were too full, and not those that were
too empty (he isn’t stupid!).  Now put the strip of paper back in
position  in  order  to  return  to  a  symmetrical  distribution.   Look
carefully at the end of the strip; depending on how you have folded
the paper the paper model may or may not touch the table surface.
Note that there is an important difference between a real normal
distribution and the model that we have created: the strip touches
the table, but only at an infinite distance. The rest of the strip has an
infinite length (like the table) but I'm sure you can imagine that
without cutting down an infinite number of trees in order to build
an  endless  strip  of  paper.  By the  way,  when  you  have  finished
playing please remember to throw the paper into the appropriate
container for recycling.
But  back  to  the  normal  distribution,  which  is  also  called  a
Gaussian after  the  famous  mathematician  Johann  Carl  Friedrich
Gauss (1777 - 1855). If you look closely you can see that the curve
rises first with an upward concavity, then the curvature changes and
becomes convex. The curve reaches a maximum, then it falls again
with a convex shape and then a concave shape. The highest point of
the  curve  corresponds  to  the  average  (try  to  find  the  centre  of
gravity of the Gaussian that you built), while the point where the
curve  turns  from concave to  convex  (mathematicians  call  it  the
inflection point ) is exactly one standard deviation away from the
average.
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Nice eh! The first time I heard it I enjoyed it a lot; you know it
doesn’t take much to amuse me.
In the formula of the Gaussian (in the appendix) the symbols and
 are used (read mu and sigma), where  is the mean and  is the
standard  deviation.  These  are  called  the  parameters of  the
Gaussian, because from an average and a standard deviation, one
and only one Gaussian can be obtained. When and the
Gaussian is called a standardized Gaussian.

This is how you can ask R to draw a standardized Gaussian:

x<--40:40
x<-x/10
win.graph()
plot(x,dnorm(x),type="l")
title(main="Normal
Distribution")
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Now try to build another Gaussian like the one we just made, but
before inserting the strip into the two pockets shorten the strip by
2cm. You should get something with this shape:

This is a Gaussian with a larger standard deviation. By comparing
the two Gaussians and  by moving them you can simulate what
happens when the mean and the standard deviation change. When
the average changes the Gaussian moves to the right or to the left
(the  centre  of  gravity  moves)  and  when  the  standard  deviation
changes the Gaussian "widens" or "narrows".  In reality it is not the
case that it gets wider, remember that the ends stretch to infinity, so
Gaussians are all the same width. Let’s say that when  increases
the Gaussian becomes a bit overblown.
If you play a little with long and short paper strips of paper you will
soon realize that stretching the strip to simulate a reduction in the
standard deviation only works up to a certain point. Beyond this
point the curve takes a shape like this:

which it is not a Gaussian. In the
end we only made a  model  of  a
quite  complicated  mathematical
function,  and this  model,  like all
models, has certain limitations. 

The Gaussian has some very interesting properties. For example,
the mean, given that it divides the distribution exactly in two, is
equal  to  the  median.   Also  the  range from the  mean minus  the
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standard deviation to the mean plus the standard deviation includes
approximately 68% of the total observations. More generally, the
following can be calculated:

  .

  = .

  = .

Then you can calculate the percentiles based on the standard
deviation. Let’s get R to help us.

> pnorm(-3:3)
[1] 0.001349898 0.022750132 0.158655254 0.500000000
[5] 0.841344746 0.977249868 0.998650102

The pnorm()function does everything we need.  It  needs a mean
which  we  haven’t  given  it,  so  we  can  use  the  average  for  the
standardized Gaussian (= 0). Then it needs one or more standard
deviations, and here there is a very convenient R function " : "
(colon) which can be translated as "count from ... to .." in this way:

> -3:3
[1] -3 -2 -1  0  1  2  3

in our case, from minus 3 to plus 3. In this way R calculates the
area under the Gaussian for the mean plus or  minus 1 ,  2  or 3
standard deviations. Obviously we have to specify whether we are
interested in the area to the left or the area to the right of each of
the specified points. This is done with the option lower.tail. As is
evident from the examples below, the default option is to calculate
the area to the left. The results of the calculation are 7 numbers, one
for each .  As usual R numbers the results in square brackets and
moves to a new line when there is no longer place on a line.
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> pnorm(-3:3,lower.tail=TRUE)
[1] 0.001349898 0.022750132 0.158655254 0.500000000
[5] 0.841344746 0.977249868 0.998650102
 
> pnorm(-3:3,lower.tail=FALSE)
[1] 0.998650102 0.977249868 0.841344746 0.500000000
[5] 0.158655254 0.022750132 0.001349898

Now let’s look at the results. How do we get the area under the
curve that lies between ?

Just subtract from 1 (the area under the standardised Gaussian)  the
area to the left of -and the area to the right of  (the areas are
equal, because the Gaussian is symmetrical). Here we are:

> 1-0.001349898*2
[1] 0.9973002

That is, approximately 99.7 % , as reported in the table above.

I'm  sure  you  understand,  so  there  is  no  need  to  repeat  the
calculation for 1 or 2.

Let’s go back to Gervase who, given the poor performance of his
packaging machine, decided to carry out some drastic exceptional
maintenance.  So,  after  convincing  Adalgisa,  the  hen,  to  choose
somewhere  other  than  the  scales  for  laying  her  eggs;  and  after
having forced shut the box of Christmas decorations that for years
had been sitting around, and after sorting out various other small
details  he picked up some new bags of sweets and here are  the
weights in grams:

2995 3010 3007 2999 2998 2994 3006 3003 2998 2992
3002 3004 3005 2997 3002 3003 3006 3002 3009 3008
3000 3001 2995 2990 3011
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Let’s  assign  these  values  to  a  variable  in  R  that  we  will  call
"weights " (you can cut and paste the numbers from the page)

> pesi<-c(2995, 3010, 3007, 2999, 2998, 2994, 3006,
+   3003, 2998, 2992, 3002, 3004, 3005, 2997, 3002,
+   3003, 3006, 3002, 3009, 3008, 3000, 3001, 2995,
+   2990, 3011)

please note that by starting a new line after a comma, R recognized
that I was writing an incomplete expression and started the next
line with a "+ " , which in this case has nothing to do with addition
but simply means "continued from the previous line"

Now it is easy to do some calculations:

> mean(pesi)
[1] 3001.48
> sd(pesi)
[1] 5.672448
 
> mean(pesi)-3*sd(pesi)
[1] 2984.463

> mean(pesi)+3*sd(pesi)
[1] 3018.497

Therefore , Gervase concluded that he expected about 99.8 % of his
bags of sweets to weigh between 2.984 Kg and 3.018 Kg. Now the
children should no longer complain.
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Chapter 5
Other distributions

Now it should be clear how convenient it is to use the Gaussian
distribution as a model of random events. In fact we do not have an
absolute guarantee that the errors in the sweet packaging machine
have exactly a Gaussian distribution, but this issue is so important
that  there are many  tests (be patient;  we will  talk  about tests  in
chapter 7) to try to understand if it is too risky to assume that the
data has a normal distribution.

Here it is not appropriate for me to do a complete review of the
various tests. There is the Shapiro-Wilk test, or the Chi-square test,
or  the  test  with  the  best  name of  all:  the  Kolmogorov-Smirnov
test.You can get R to help you to understand how to use them or,
better still, look at a book (also Wikipedia talks about the tests).
There are also several graphical methods to address this problem;
in the next chapter, for example, we will see how to superimpose a
histogram on a Gaussian.

Another  way to  try  to  understand  if  our  data  follows  a  normal
distribution  is  to  make  a  box-and-whisker  plot,  like  the  one  in
chapter 3. If the data follows a normal distribution, the median will
be equal to the average, so it should be in the middle of the box.
Moreover, given that 50 % of the observations are in the box, the
first and third quartiles should not be far from the inflection point
of  the  Gaussian  (the  mean  ±  1standard  deviation).  The  two
whiskers should be approximately equal in length and there should
be  few  outliers,  that  is  data  beyond  the  mean  ±  1.5  times  the
interquartile range (which is a number not very different from 2
standard deviations). Below, R is used to create the boxplot of the
set of weights from the previous chapter, and a Gaussian with mean
and standard deviation equal to those weights.
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win.graph()
par(mfrow=c(2,1))
boxplot(pesi,horizontal=TRUE)
xx<-2990+1:20
plot(xx,dnorm(xx,
mean=mean(pesi),sd=sd(pesi)),type="l",ylab="")

Please  note  the
delightful mfrow

option in the par
command,  which
allows  us  to
create  a  window
with  two  (or
more)  graphs
together.  In  this
case,  the  data
seem pretty close
to  the  normal
distribution  and
the  left  whisker
is just a little bit
shorter  than  the
right one.

However,  having  a  reference  distribution  is  so  helpful  that
statisticians have looked for other distributions that are suitable for
describing different events. For example, we said that the Gaussian
describes a continuous measurement  to  which a  random error is
applied. On the other hand, the binomial distribution can be used to
describe  events  with  only  2  possible  alternatives.  Like  the  time
Gervase decided to produce sweets with a hole; how likely is the
sweet  to  have  a  hole in  it  and how likely is  it  to  be produced
without a hole.
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In general, the Poisson distribution is said to be suitable to describe
rare events. For example, it was used by Colonel von Bortkiewicz
(1868- 1931) in the late 1800s to describe the number of deaths
annually from horse kicks in each unit of the Prussian army.

The  uniform distribution describes events  that all  have the same
probability, while the Weibull distribution is often used to describe
the incidence of failures.

Many stories have been written about these and other distributions,
but they are not for this book. 
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Chapter 6
Sample mean and population mean
(How much liquorice juice did you put in?)

One day Gervase set off on a journey. He had to participate in an
internship about sweets organized by his friend Chalkbeard . He
had left the laboratory in the loving care of his best worker: Tony.
At that time a batch of wonderful liquorice blackberries, made with
Gervase’s  secret  recipe was being processed.  Except  that,  in the
bustle  of  departure,  Gervase  had  forgotten  to  leave  precise
instructions as to how to proceed with the work. In particular, Tony
could not establish how much liquorice juice Gervase had already
added to the pot.

In fact Gervase had already put exactly 500 millilitres of liquorice
juice into the pot that contained 50 litres of syrup. So 500 millilitres
divided by 50 litres (that is to say 50000 ml), gives exactly 0.01 i.e.
a concentration of 1%. But Tony did not know this and did not
want to disturb Gervase by sending him a carrier pigeon (mobile
phones were not in use at that time).

Therefore Tony decided to take a small sample from the pot and to
analyse it to determine the exact concentration of liquorice juice.
The analysis of the sample yielded these five results:

0.01    0.015     0.02     0.008     0.022

with an average of 0.015.

But  shouldn’t  it  be  0.01?  We already know that  the  mean  was
exactly 0.01, but Tony did not know that and it is possible that due
to an imperfect mix of the ingredients, or due to some inaccuracy in
the  measuring  instruments,  the  average  of  a  small  sample  of
measures  was  not  exactly  equal  to  0.01.  Life  is  full  of  infinite
absurdities, which, strangely enough, do not even need to appear
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plausible,  since  they are  true  (in  this  way we have  also  quoted
Pirandello [6]). So Tony thinks that 750 ml of liquorice juice was
put in the pot, while we know that was not the case. ‘Statistics lie’ I
can almost hear a little voice say; but once again it is not true. We
simply have to be very careful not to confuse the average calculated
on the basis of a sample with the true mean of the whole pot. The
average  derived  from a  sample,  calculated  in  whatever  way (it
makes no difference if it is calculated by hand, with a computer or
with our paper computer) is an average based on a sample. For this
reason it is called the  sample mean and is generally denoted by a
small line above the variable name. For example, the mean of x is

x̄  .

 On the other hand the mean of the whole pot is usually called the
population mean or the real mean and you can never know exactly
what its value is. It is denoted by the Greek letter  (mu) and is one
of the parameters of the Gaussian.  Already, it is logical to think
that, if we were to analyse the whole pot, with an infinite number
of  samples,  we  would  not  always  get  the  same  value,  but  the
measures we get would be normally distributed, like a Gaussian,
with  a  mean  and  a  standard  deviation.  This  is  because  the
movement of the molecules of liquorice juice in a pot is inherently
variable and can only be described with statistical methods. To use
the jargon it is said that it is a stochastic phenomenon.
I can assure you that, when I started studying statistics, by myself,
it took me a long time to understand why the mean was represented
in one part of the book by the symbol x̄  , while elsewhere the

symbol was used. Now it should be obvious that x̄  is simply

the result  of a  calculation,  while  is  something that  we do not
know but that we would like to estimate. In this way we can use it
as a parameter of a Gaussian and as a model of the whole universe
of data that we are analyzing. 
Typically, we are in the same position as Tony; we cannot know the
population mean (we cannot analyze the whole pot), we can only
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calculate the average of a sample. But, you say, it would be helpful
if there were some sort of relationship between the two: in italian
they have the same name!* In fact, one of the purposes of statistics
is precisely to help us to estimate the true mean. To use statistical
jargon, the process of estimating parameters is called inference and
this particular branch of statistics is called inferential statistics.
 
How do we do it? It is simple. First of all we calculate the standard
deviation of the samples (we will call this s) and s is divided by the
square root of the sample size. Tony had 5 samples taken from the
pot,  so the  standard  deviation  calculated  with 5 samples  can  be
calculated using R.

samples<-c(0.01, 0.015, 0.02, 0.008, 0.022)

> mean(samples)
[1] 0.015

> sd(samples)
[1] 0.006082763

> sd(samples)/sqrt(5)
[1] 0.002720294

The answer is approximately 0.0027,  and this value is called the
standard error. 
So Tony did not know the true mean, but statistics tells us that the
probability of finding it is a Gaussian distribution (also this!) with a
mean equal to the sample mean and a standard deviation equal to
the standard error. Then (according to the table in Chapter 4) there
is a 95% probability that the true mean is between 0.015 plus or
minus twice the standard error. Therefore it is between 0.0204 and
0.0096 and,  in fact,  the true mean (which we know) is  between
these two values. In conclusion, Tony knows with 95% probability

* In English the term average is referred to a sample while the term mean is 
related to the true mean, but often they are interchangeable. 
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that Gervase put between 480 ml and 1020 ml of liquorice juice
into the pot. You might say that this is a little vague. This is not the
fault of statistics; we can either reduce the standard deviation or
increase the size of  the sample.  It  is  obvious that  if  the sample
becomes larger, the estimate improves, so as n tends to infinity the
standard error tends to zero and the sample mean becomes equal to
the true mean. Similarly, it is obvious that if we mix the contents of
the  pot  well  and  use  accurate  methods  of  analysis  s becomes
smaller  and  the  estimate  improves.  However,  often  researchers
need  statistics  because  the  phenomena  that  they  are  studying  is
inherently uncertain and there is no way of reducing s.
This  way of  working  is  common  in  statistics  and  is  called  the
interval estimate. When we estimate something that is impossible
to  calculate  exactly,  we  calculate  a  range  that  contains,  with  a
known probability  (typically  95%) the  true  value.  This  range  is
called the confidence interval and, from the above, you've probably
figured out that it can be calculated for all kinds of estimates.
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I will try to explain it another way, and with a little drawing. There
is a universe that we do not know (if we knew it there would be no
need to use inferential statistics) which I have put in a cloud. From
this we extract a sample of n observations. With this sample we
carry out calculations to find, for example, the mean and standard
deviation. The square bracket in the drawing is our computer, R.
We assume (inference is the wavy line), that our sample mean  is
the  best  possible  estimate  of  the  true  mean  (to  indicate  the
estimated  average  a  "little  hat"  is  put  on  the  variable,  like  this

x̂ ). Finally, by calculating the standard error we estimate what

mistake  we  could  make  by  deciding  that  the  figures  that  we
calculated describe the universe we started with (dotted line).

Please note that this general reasoning applies to anything we want
to estimate with statistics; the important thing is to choose the right
distribution to use and to decide how to sample it.

At this point there could be a long discussion about inference. The
fact is that this reasoning is valid only if certain things are valid:
i.e.  there are some  assumptions.  In this  particular  case,  the only
assumption  is  that  the  errors  are  distributed  according  to  a
Gaussian.  But  be  careful;  each  inference  depends  on  specific
assumptions that will be relevant to each particular case, otherwise
our conclusions may be completely wrong. Furthermore, the results
of the inference depend not only on the assumptions, but on how
we selected the sample.  Precise rules  exist  on how to carry out
sampling, which I cannot tell you about here; just remember that
sampling should not be done " haphazardly". 

But there is another interesting thing. There is a theorem called the
central limit theorem that shows that whatever the distribution of
our starting universe (well  should not be infinite), if we extract n
samples many times and every time we calculate a sample mean,
all  these  averages  will  tend  to  be  distributed  according  to  a
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Gaussian,  and  we  have  already  seen  how  easy  it  is  to  use  the
Gaussian model.
 
Now, please go and get the histogram that we made with the masu
on cha.1 and also the Gaussian on cha.4 that I told you was like a
Gaussian  histogram  made  with  an  infinite  number  of  infinitely
small masu. Now we can be more precise: in fact we can check that
our  paper  Gaussian  has  a equal  to  about  1  masu,  while  the  s
calculated on cha.2 was 1.2 because we had used A4 paper, pieces
of paper about 10 cm long, and had folded the paper into 2 cm
lengths...these  figures  having been chosen to  make the  numbers
work.
Now we can try to superimpose the Gaussian on the histogram,
knowing that our estimate  x̂=3  is affected by a standard error

of 1.2÷√(5)=0.54  Therefore, the true mean could be between

1.92 kg and 4.08 kg (with about 95 % confidence).

Do you remember the large warehouse with all of Gervase’s bags
of sweets mentioned on cha.1? Now, with the help of R all of those
numbers no longer look so frightening.
 
 > weight<-c(2, 3, 3, 5, 2, 3, 3, 2, 2, 3, 2, 3, 1, 2,
+  3, 3, 4, 3, 4, 2, 4, 3, 1, 5, 1, 3, 1, 2, 2, 2, 4,
+  3, 2, 2, 4, 3, 5, 3, 2, 1, 4, 3, 2, 3, 2, 3, 1, 4,
+  5, 1, 1, 3, 3, 1, 2, 2, 1, 4, 3, 2, 2, 2, 2, 2, 3,
+  4, 2, 2, 2, 1, 2, 2, 3, 2, 2, 3, 4, 1, 2, 3, 3, 4,
+  2, 2, 2, 1, 3, 3, 1, 4, 1, 2, 1, 2, 1, 2, 2, 4, 2,
+  2)
 
> mean(weight)
[1] 2.48
> sd(weight)
[1] 1.049098
> sd(weight)/sqrt(length(weight))
[1] 0.1049098
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So the mean is equal to 2.48, the standard deviation is equal to 
1.05, and the standard error is equal to approximately 0.10.

So the true mean should be between 2.28 and 2.68 kg (with 
approximately 95 % probability) .
And finally we can draw the histogram of a Gaussian and with 


> win.graph()
> hist(weight) 
> plot(function(x) length(weight)*
   dnorm(x,mean=mean(weight),sd=sd(weight)),
   from=1,to=5,add=TRUE) 

I admit that the last R
instruction is a little bit
cryptic. The fact is that
the function plot()
has a lot of options and
possibilities. If you are
curious and want to
know more try writing: 

>?methods(plot)

and in particular:

>?plot.function
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Chapter 7
The verification of a test
(the soft toffee) 

You should know that  one of  the  real  specialities  of  Gervase is
toffee that, in addition to being delicious, is really soft and juicy.
However,  things do not always go well.  Once,  before Berta had
learned to spin, Gervase was producing soft toffee that stuck to the
teeth,  until  one  day his  young  assistant  (Tony,  again)  stumbled
upon an ingredient  that,  when combined with the toffee mixture
produced  a  toffee  that  was  even  softer  and  melted  more  in  the
mouth. I am sure that the more curious among you will want to
know what it was; unfortunately it was so long ago that it has been
forgotten. However, Tony prepared a few of these new sweets and
gave them to Gervase to try. Gervase liked them but said to Tony
that he had always produced his sweets with his traditional recipe
and before changing the recipe he wanted to make sure that the new
sweets  were  really  softer.  How  can  we  be  sure  that  these  new
candies are softer because of the new ingredient in Tony’s mixture?

“You  used  a  different  mould,  you  regulated  the  heating  of  the
mixture in a particular way, then there is the cooling temperature,
and then of course, each sweet has its own melting characteristics”
Gervase said.
“Let’s do this: let’s prepare two lots of sweets, one with the old
recipe and one with the new recipe, trying to heat them the same
amount, using the same mould and cooling them in the same way.
Then  we  can  measure  the  melting  characteristics  and  make  a
comparison.”
“Okay” Tony answered.
Do you want to know how to measure the melting characteristics of
toffee? It is easy; you do the dragon spit test. You put the toffee in a
glass full  of  dragon spit  and measure how long it  takes  to  melt
completely.
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Here are the melting times of 10 sweets made with Tony’s recipe.
We’ll call them A, for Tony, whose real name was Antony.
While we're at it, we might as well put them in R and calculate the
mean.

> A<- c(72, 82, 65, 83, 50, 61, 83, 68, 52, 75)
> mean(A)
[1] 69.1

Then  we collect  the  melting  times  of  10  sweets  made  with  the
traditional recipe, which we put in group G, for Gervase. 

> G<- c(89, 71, 76, 81, 75, 79, 60, 62, 70, 61)
> mean(G)
[1] 72.4

But  how  do  you  tell  which  ones  are  the  juiciest?  The  average
melting time in dragon spit of group A is less than the average for
group G, but there are a couple of values in G below the average of
A. Are these exceptions? So, should we do another test? Are you
going to get all the dragon spit that is needed? Be careful, you can’t
just  throw  away  the  used  spit  wherever  you  like:  it  must  be
disposed of carefully because it is a pollutant.

In reality, things are much simpler. All that is needed is a test. In
statistics  we talk about  hypothesis  testing because,  in  effect,  we
make a hypothesis and then verify that hypothesis. Or should I say,
we try to falsify that hypothesis. In fact, the hypothesis is always a
hypothesis of no difference. In our case the hypothesis is that G is
equal to A and is called the  null hypothesis, known as H0 to its
friends. So H0: A = G
But if A equals G the difference between the averages should be
zero.  However,  we must  remember that  the two means are only
estimates so we have to take this into account by calculating the
standard error of the difference between the means.
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Then we calculate the difference between the means divided by the
standard error of this difference.  I know very well that we have not
yet  learned  how  to  calculate  the  standard  error  of  a  difference
between means, but I am very keen on formulas. The formula, like
all the others, is in the appendix.

What  is  very interesting  is  that  the  number  that  comes  out  also
follows a well-known distribution, that is, it follows a well-known
mathematical function. The distribution was described for the first
time by William S. Gosset (1876- 1937) in 1908 while working for
Alec Guinness & Co. the  beer company. I told you that statistics is
very useful - it is also connected with making beer!

Dr. Gosset published his findings under the alias "Student", so the
distribution  is  called  Student's  t.  This  distribution  allows  us  to
calculate how likely it is that a certain value of t (from Student)
occurred  by chance.  Since  t  is  a  difference  between  the  means
(divided by an error), it is like saying that it is a coincidence that
there is a difference, which is to say there is no difference. That is a
bit like saying that there is a probability that H0 is true.
Then, if this probability is sufficiently low we can conclude that H0
is probably false, and so A is different from G.

I know that you have probably lost the thread of the argument, Let's
recap with an outline.

Basically someone has already taken the trouble to:

1.  invent  a  formula  that  measures  the  difference  between  two
samples
2. demonstrate that the result follows a distribution
3. calculate the values of this distribution
4. arrange them in a table (or include them in a program such as R),
ranked by the probability that H0 is true; i.e., it is true that there are
differences between the means. 
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All that remains for us to do is to:

a) define a H0 (something equals something else) which really we
want to falsify
b) calculate the statistical test (t , in our example)
c) look up in the table, or get R to calculate,  the probability that H0
is true for the value (t)
d) look at whether the probability is high or low
e) if the probability is low to reject H0 (the two are different)
f ) if the probability is high then we say that we cannot reject H0
(so probably the two things are not different).

Like all sciences statistics has its own jargon, and like all languages
statistical jargon has a reason to exist. In fact, saying that we reject
H0 (point "e" above) is a bit like saying that H0 is false, but it is
more correct to say that it  is probably false.  On the other hand,
saying that if the probability is high we "cannot reject H0" (point
"f" above ) seems a bit Byzantine, but in fact it is not, because I
have not been entirely clear with you. The probability that you find
in the table is not the probability that H0 is true, but the probability
of making a mistake by saying that it is false, and this is not the
same thing.
For example, we have obtained a high P (and thus are not able to
reject H0) because we used a sample that was too small. Is there a
way to check this? It involves calculating the power of the test that
we used, and R has many tools for carrying out such calculations,
for example a beautiful package is called pwr; but its use is beyond
the scope of this little book.

But let’s go back to our toffee. This is the value of the Student's t
calculated by R for groups G and A 
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> t.test(A,G)

        Welch Two Sample t-test

data:  A and G
t = -0.6753, df = 16.988, p-value = 0.5086
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
 -13.610851   7.010851
sample estimates:
mean of x mean of y 
     69.1      72.4 

So t is equal to about minus 0.67. This corresponds to a probability
(P ) of 0.5086 , that is to say about 50%. So there is a 50 % chance
of making a mistake by saying that G is not equal to A (rejecting
H0).  Therefore  we should  not  reject  the  null  hypothesis:  Tony’s
new ingredient  does  not  change  the  melting  time  of  the  sweets
significantly.

What we have done so far applies to many statistical tests; all that
changes is the statistical test and the distribution it refers to. Let’s
look at a few examples.

In our case we are comparing the melting times of 2 samples of
extra-soft  toffee.  The  measurements  of  the  first  sample  are
independent  of  the  measurements  of  the  second  sample  so  the
Student t test is okay.

But  once  Gervase  found himself  in  trouble  with  the  elves  who,
tempted by strings of liquorice ran the risk of getting high blood
pressure. Indeed, some argue that eating too much liquorice causes
blood pressure to increase so Gervase called a medical friend who
measured the blood pressure of the elves before and after the shift
making strings of liquorice. Everyone knows that when they work

59



with strings of liquorice the elves taste a little here and there; you
can’t take it away from them. 

In this case we cannot overlook the fact that the blood pressures
refer to the same elves, that is, the x-th measure before working
with the liquorice corresponds to the x-th measure after working
with the liquorice because both relate to elf x . In this case you
cannot use the Student t test in the form we saw above, but you
have to use another formula that is called the paired Student t. The
distribution it refers to remains the same, but the way you calculate
t and the degrees of freedom change.

I can assure you that it is not Byzantine. Let’s look at an example.
Let’s create two variables with R:
 
M<- c(5,23,18,9,12,25,19,14)
N<- c(7,24,19,11,15,25,20,15)

If  we  want  to
compare  them
with  the
Student  t  we
must  first
know  where
the  data  came
from  in  order
to  decide
whether to use
the  Student  t
for paired data or the student t for unpaired data. We have already
seen that for an A4 sheet of paper the sides are in the proportions

1÷√2 .  This  can  be  verified  by  doing  the  fold  above  and

measuring the distance between A and H (the reason for this should
be obvious if you consider that the valley fold divides the angle
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ACH exactly in half, while the mountain fold is the diagonal of a
square).

Imagine  that  you  want  to  compare  the  accuracy  of  two
manufacturers of paper,  then M and N are the measurements, in
microns, of the distance between A and H for 10 sheets of paper
taken from 10 different reams of paper for two suppliers, Manuel
and Nando . Using the unpaired t (the R t-test for unpaired data is
the "default " option, so it is not necessary to specify paired =
”FALSE”. You can check this using ?t.test) .

> t.test(M,N)

        Welch Two Sample t-test

data:  M and N
t = -0.4194, df = 13.854, p-value = 0.6813
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
 -8.413401  5.663401
sample estimates:
mean of x mean of y 
   15.625    17.000 

t= - 0.419     P= 0.68    df=16 
so we cannot reject H0.

On the other hand, if we imagine that we have 10 suppliers of paper
and that in a new contract the proposed price for the paper is based
on the precision of  their  cutting,  we can try to  test  whether  the
economic incentive has any effect by comparing the precision of
the cutting for each supplier before (M) and after (N) the changes
to the contract. In this case you have to use the Student paired t
test:
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> t.test(M,N,paired=TRUE)

        Paired t-test

data:  M and N
t = -4.2451, df = 7, p-value = 0.003816
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
 -2.1409 -0.6091
sample estimates:
mean of the differences 
                 -1.375 

 t= - 4.24     P= 0.003    df=8 
so we can reject H0.
 
So you can see. A different source of data leads (in this case) to
opposite conclusions. This is  very important.  A computer cannot
know  where  you  got  your  data  from  and  how  you  made  the
measurements. This is definitely something that you have to decide.

Sometimes  it  is  necessary  to  analyze  data  that  are  not
measurements, but numbers that relate to qualitative variables. Do
you remember the sweets with the holes?  Sweets either have holes
or not; you cannot measure half a hole or two point seven holes.
Again, in this case you cannot use the Student t but you have to use
another statistical test, such as the chi-squared test (to its friends it
is known as and for R it is chisq.test()).

An interesting application of the chi square test  is to see if  it  is
reasonable to assume that a sample of observations come from a
normally distributed population.

If the data are not normally distributed, then you cannot use many
statistical  tests.  You  have  to  resort  to  a  new  family  of  tests:
nonparametric tests.
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The important thing is that all these tests operate in the same way.
You define a H0, you try to falsify it, you calculate a statistical test
and you look it up in a table or on a computer. Once you know the
mechanism it is the same every time. Just be careful to choose the
right test.

Often, talking about probability I referred to low probability and
high probability. But how high and how low? Usually we use 5%
(in some cases 1%), namely 0.05 (or 0.01). If P is less than these
values we feel we are permitted to reject H0.
But beware, there is still a 5 % chance of making a clumsy mistake,
that is, to consider two samples to be different when they are not.
This  is  called  a  type  I  error,  also  called  an  alpha  error ().
Obviously there is also another kind of error  which is  when H0 is
false but we do not reject it. This is called a  type II error or  beta
error ().

Reality My decision

Reject H0 Do ot reject H0

H0 is true   error OK

H0 is false OK  b error
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Chapter 8
Paper Palaeontology 

Let’s  play  another  game.  Let’s  play  at  being  scientists!
Palaeontologists in search of dinosaurs.

The fold above is nice in terms of its simplicity. It reminds me of
one of the first reptiles that adapted itself to amphibian life. I think
its name was Dentonus Cartaceus , probably due to the fang with
which  it  looked  for  food in  the  mud  of  the  sea  floor.  It  had  a
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beautiful strong tail which helped it to move and two front flippers,
almost capable of functioning as rudimentary legs when it came out
of the water. It was a rather lazy animal and used its fang to attach
itself to ammonites and to get carried through the water rather than
swimming. Hence the saying that is famous among the ammonites,
"to scrounge like a dentone". You have never heard this expression?
Well in fact it hasn’t been used for a while, the ammonites having
been extinct since the Cretaceous period ...

So  if  we  make  some  Dentonus,  in  addition  to  inventing  its
characteristics  and habitat  (you realized that  I  invented  it  didn’t
you?), we can also study its shape. One of the jobs of a scientist is
to measure things. If we begin measuring things someone will say
"how boring  this  is".  It  may be that  it  is  not  very exciting,  but
without measurement science doesn’t go anywhere. Indeed, if you
look into the history of scientific  discoveries  you will  find that,
almost always, they are related to the collection of measurements.
For  example,  Galileo  spent  a  long time  measuring  the  speed of
falling objects, throwing iron balls from the tower of Pisa, while
that  scoundrel  Kepler  was  able  to  formulate  his  famous  laws
because he had the data patiently collected by Tycho Brahe.
The  fact  is  that  even  when  taking  measurements  we  can  make
mistakes.  Statistics  can  come  in  handy  to  find  out  if  our
measurement errors are acceptable or not.
How does it work? You may have noticed that, like Nick’s dog in
chapter 3, also for Dentonus, some folds are left to the aesthetic
sense of the person folding the paper. So if you like we can make
some little Dentonus with different behaviours: one that is looking
around; one that is delving in the mud; one that is looking up; one
with its tail down, a little depressed about the ammonites; and one
that is all excited, with a straight tail.
Then  let’s  play  at  being  palaeontologists.  We  have  found  these
beautiful dentonus fossils and have to measure them. But if we are
to do things properly, we must make sure that the various teams of
palaeontologists  around the world use the  same method and the
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same  expertise  in  measuring  the  fossils.  Dentonus  are  not  like
mushrooms and are not all in the same place, so, either we make
sure that everyone uses the same method to measure them, or we
must carry all of them to the same laboratory and measure them
with the same system. It is pretty obvious that, besides our little
game, the problem is actually a very serious one and involves all
multicentre trials, to use the scientific jargon. For example, if we
want to study a relatively rare disease, we have two options: either
to spend a lot of time collecting a sufficient number of cases, or we
reach an agreement with different hospitals and to put together the
observations from each hospital. In the latter case it is absolutely
essential  that  the  measurements  are  done  in  the  same  way,
otherwise measurement errors can totally invalidate the project. In
fact, from one point of view, this chapter should have been the first
chapter of the book; if Gervase had not been sure that the weights
obtained  from  the  scales  were  correct,  or  if  Tony’s  way  of
measuring  the  melting  time  of  the  fudge  had  been  different  to
Gervase’s method then everything we have said and done so far
would not stand up.

A  good  way  to  evaluate  reproducibility  is  to  repeat  each
measurement  at  least  twice  under  different  conditions  that  are
known to be important,  for example with different tools or with
different operators, and then to try to measure any errors that were
introduced by the repetition.

Be careful!  To conduct a test such as one of those explained in
chapter 7 and to apply it ‘upside down’, i.e. to look for a P greater
than 0.05 and to conclude that there are no differences, therefore
the measurements are reproducible, is totally wrong. In fact, to say
that "there is a high probability (greater than 5%) of being wrong in
saying that there is no difference between the two sets of measures
"  is  not  the  same  as  saying  that  "the  two  groups  are  equal."
Absolutely not! When P is not significant ( > 0.05) it is like saying
" we do not know ". For example, one possible cause of this might
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be the size of the sample, as mentioned in chapter 7. The subject is
too  lengthy to  cover  in  detail  here,  but  intuitively it  is  easy  to
understand that:

• the variability of a phenomenon
• the significance of a test about a difference
• the sample size
• type and type errors 

are all things that affect the situation.

If you think about it:
• the more a phenomenon is variable the greater the amount of data
that will be required to find a difference.
• the bigger the difference the fewer the number of observations
that will be needed.
But  then,  someone  will  say,  if  you  dramatically  increase  the
number of observations P will become more significant. Exactly! A
difference,  no  matter  how  small,  will  become  important  if  the
number of measurements is high enough. For this reason statistics
based only on P can be misleading: I could demonstrate that my
medication to reduce blood pressure is more effective than a drug
currently on the market, simply by taking millions and millions of
measurements. It is too bad that the difference, though statistically
significant, is only 0.1 mmHg (millimetres of mercury) which is
clinically irrelevant. One of my teachers once said: "Statistics based
on  P  is  statistics  for  the  rich"  .  This  is  because  taking  many
measures costs time, effort and money as you might have realised
when you had to measure the dogs in chapter 3.

But now let’s go back to our problem of reproducibility.
Another  idea  is  to  use  the  measures  of  association  (remember
chapter 3) such as the correlation coefficient. Hopefully, a simple
example will help you to understand that this is not a good idea.
Imagine that 10 dentonus were measured from nose to tail by two
researchers Bill and Bull: 
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Bill<-c(10,12,15,18,13,9,11,10,16,14)

Bull<-c(8.0,10.2,13.5,16.8,11.3,6.9,9.1,8.0,14.6,12.4)

Now if we ask R to put the values side by side, it is easy to see that
at least one of the two has not done a very good job.

> cbind(Bill,Bull)
      Bill Bull
 [1,]   10  8.0
 [2,]   12 10.2
 [3,]   15 13.5
 [4,]   18 16.8
 [5,]   13 11.3
 [6,]    9  6.9
 [7,]   11  9.1
 [8,]   10  8.0
 [9,]   16 14.6
[10,]   14 12.4
 

Look at the numbers. It is not acceptable that the same dentonus is
10 cm long according to Bill but only 8 cm long according to Bull,
and so on. Yet, if we ask R to calculate the correlation coefficient
between Bill and Bull: 

> cor(Bill,Bull)
[1] 1

The answer is 1, namely a perfect correlation!! Why is that?
The  answer  is  simple.  I  created  Bull’s  numbers  artificially  by
increasing  Bill’s  numbers  by  10%  and  then  subtracting  three
centimetres:

> Bill*1.1-3
 [1]  8.0 10.2 13.5 16.8 11.3  6.9  9.1  8.0 14.6 12.4

So it makes sense that r is equal to 1 and that the points on the
graph are perfectly aligned. But remember chapter 1: Be careful of
the scales! This just goes to show that the concept of association
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between two measurements
is very different from what
we are looking for here. We
are  not  interested  in
whether  the  measurements
are associated, but whether
there  is  agreement  about
the measurements, whether
the  measurements  are
reproducible  or  whether
they  match.  In  fact  the
terms  reproducibility,
reliability  and  agreement
are  not  exact  synonyms,
but  they  indicate  concepts
that  are  quite  similar  to  each other,  but  very different  from the
concept of association.

So how do you assess reproducibility?
There are so many ways to do it. For example, there is a graphical
method proposed by Bland and Altman [11] which is quite nice, or
there is the Intraclass Correlation Coefficient (ICC) [12]. A review
of all  the methods is beyond the scope of this  text,  I  think it  is
sufficient  to  examine  just  one:  The  Concordance  Correlation
Coefficient, known as CCC to its friends.

One of the easiest ways to calculate the CCC is to use an R package
called epiR. In fact we have not yet talked about R packages, they
were only mentioned in passing in chapter 7. The fact is that this is
something that is easier to use than to explain. Basically there are
many additional  packages that  make R even more powerful  and
even more versatile.  To use a  package you need to  install  it  by
downloading  it  from  a  server,  using  the  "Install  package(s)"
function in the "Packages"menu. At this point the package is on
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your  PC,  but  to  use  it  you  have  to  load  it  into  the  memory,  for
example, with the following command:

require(epiR)

At this point you can execute the function:
 
epi.ccc(Bill,Bull)

The result  is  something a  bit  unusual  which is  called a  list  and
contains (among other things) the following:

rho.c the value of CCC and, in particular
$rho.c$est the estimate of CCC
$rho.c$lower the lower margin of the confidence interval
$rho.c$upper the upper margin of the confidence interval
C.b The correction factor Cb

The fact is that the list is unusual and contains many other objects,
which in turn can contain other objects. The $ character is used by
R to indicate which object or sub-object  we are interested in. Let’s
look at an example. Let’s assign the result of the above analysis to
the variable bla, like this:
 
> bla<-epi.ccc(Bill,Bull)

Now we can ask the R value of CCC 

> bla$rho.c
        est     lower     upper
1 0.8490153 0.6655893 0.9357144

the result is a list of three elements. If we want only the lower limit
of the confidence interval we can do this:

> bla$rho.c$lower
[1] 0.6655893
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The CCC is calculated simply by multiplying the value of r by a
correction factor Cb which is also called correction for bias . For
those  of  you  who  love  DIY,  below  is   the  R  function  for  the
calculation  of  the  CCC,  which  I  wrote  based  on formulas  from
Marubini (2005 ) [13]. 

cf.lin<-function(a,b){
# Lin CCC (Concordance Correlation Coefficient)
n<-length(a)
ma<-mean(a)
mb<-mean(b)
sa<-sd(a)
sb<-sd(b)  
# correlation coefficient
r<-cor(a,b)
# bias correction
c<-(2*sa*sb)/(sa^2+sb^2+(n/(n-1))*(ma-mb)^2)
cat("r=",r,"\n")
cat("CF=",c,"\n") 
cat("CCC=",(c*r),"\n")
# CCC
}

You will have noticed that R can " learn " to do new calculations by
defining what is called a function, with the function function ().
Don’t  be  confused  by  the  repetition;  it  is  very  simple.  After
executing  the  lines  above  in  the  console,  everything  that  is  in
brackets  will  be  run  by  R  whenever  we  call  up  the  function
cf.lin().It is only necessary to do this:

> cf.lin(Bill,Bull)
r= 1 
CF= 0.8490153 
CCC= 0.8490153 

OK, so  r is equal to 1 as we have already seen, but the CCC is
about 0.85, a value that is fairly high, but different to 1.
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Chapter 9
ANOVA
(more extra soft toffee)

One day Bortolo, the other assistant of Gervase, perhaps because he
was a little jealous, insisted that the ideal ingredient to improve the 
melting of toffee was sarsaparilla. So, no sooner said than done, 
Gervase prepared another 10 sweets with Bortolo’s recipe. Here are
the values:
B = 79 52 80 68 61 68 74 71 76 73
Now we have a problem: what are we going to compare B with?
• with G? 
• with A?
• is it the same, given that we have already "proved" that there is no
difference between the two of them?
But in fact we have not demonstrated that there is no difference. We
have established that we shouldn’t reject the null hypothesis that
there  is  no  difference  between  them.  Fortunately,  there  is  a
beautiful statistical instrument that seems to have been made to get
us out of this situation. It can help us to answer questions such as
these (even when the problems are more serious or more complex).
It is the analysis of variance, known as ANOVA to its friends.

Before we continue our discussion of ANOVA, I must introduce a
new concept to you: the concept of vectors.
It is simple; you take some numbers put them next to each other
and that is a vector. So B is a vector, as are G and A. In general,
vectors are written in bold so let’s write B is a vector, as are G and
A. In this way it is written correctly and the fussy side of me is
happy.
Maybe some of you have already heard of vectors when studying
forces in physics. In that case it may have been explained to you
that vectors are like arrows with a length, a direction and an angle.
There is no contradiction between the two definitions: if you draw
an arrow on a system of axes, putting the end of the arrow at the
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point 0 0, then the tip of the vector arrow will be at a certain point
xy; for example, x = 13, y = 78. These two numbers together form
the vector
13 78
If the arrow was in three-dimensional space its vector would have 3
elements, and would be made up of three numbers (x, y and z). So
a vector with five elements like an arrow in 5 dimensional space.
What is that you said? Five dimensional space doesn’t exist. Well,
nothing  prevents  us  from  imagining  space  with  5,  7  or  256
dimensions. Imagination costs nothing!

Let’s take the 3 vectors  G , A and  B and "put them together" to
make a longer vector which we will call Y.
 Y =  89 71 76 81 75 79 60 62 70 61 72 82 65 83 50 61 83 68 52 75
79 52 80 68 61 68 74 71 76 73 

Now all that is needed is to construct 30 dimensional space with
paper and to put our vector in it. I have to confess that I am unable
to do origami in 30 dimensions. But it is not a problem; have you
never seen a map? What does a map have to do with this? Well,  a
map  is  an  example  of  representing  something  that  is  three
dimensional in 2 dimensions. Here, all we need to do is to build a
three-dimensional  representation  (3d)  of  something  with  30
dimensions (Y). 

Let's start with an A5 sheet of paper and do the fold in the next
page.
Let’s look for a moment at the fold; it is a triangular pyramid and
all of its faces are right angled triangles.
The edges of the pyramid have the proportions 1,√(2) ,√(3) .

Six pyramids like this form a cube, or rather, with three pyramids
like this plus 3 other pyramids with the mirror form we can make a
cube.
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For convenience, it is best to mark the edges of the pyramid with
letters, so reopen the model to stage 5, then to turn it so that the
mountain folds are at the top. Mark the folds which represent the
edges of the pyramid, following the pattern shown here:

Now reconstruct the pyramid and
for  a  moment  look  only  at  the
triangle formed by the edges Y,
D and M. Let’s imagine that the
edge  that  we  marked  with  the
letter " Y " represents our vector
Y .  To  be  more  precise,  we
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should say a 3d projection of vector Y, but no doubt you understood
anyway.
Now imagine  Y in space and have a go at moving it in cartesian
space. Put the corner of edges Y and M at the origin,  while the
other end of Y (where it joins D) can be moved where you want.
You can construct a model of cartesian space with a sheet of A4
paper and can even write on the names of the three axes x, y and z. 
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Or you can use the thumb
and  two  fingers  of  your
hand, as shown. 
Be  careful,  vectors  can
also have negative values,
so if you are using a paper
model  of  cartesian  space
you  have  to  imagine  that
the  pyramid  can  also
penetrate the planes xy, yz
and  xz  formed  by  the
paper.  In  our  case,  the
values  of  Y are  all
positive,  being  melting
times.

We said that the end of Y can be in any position in space. Let me
explain  this  a  bit  better.  Imagine  that  Gervase  is  giving  Tony
experimental  values  one  at  a  time,  the  vector  being  in  30
dimensional space. In the world of fantasy 30d space exists, but
don’t ask me if it is made of paper, plywood or marzipan because I
don’t know. Whatever it is made of, it is clear that until Gervase
has given Tony all of the 30 values, he doesn’t know where to put
the arrow – the vector. Every value specifies where to place it with
regards to a certain axis (a certain dimension) and only when all of
Y is known can the vector be positioned accurately. It can be said
that Y has the freedom to be anywhere in space, so in a space made
up of n dimensions it has n degrees of freedom.
Now imagine that the edge M represents the average of Y. But the
average is a single number so how is it represented in 30d space?
Simply like this: 
70,6 70,6 70,6 70,6 70,6 70,6 70,6 70,6…….thirty times.
30 times the same number. And where do you put a vector, with
any number of dimensions, all made up of the same number? It has
to  be  on  a  straight  line  which  passes  through,  and  which  is
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equidistant from all axes. If there are 2 axes we are on a flat plane
(2d) and M is on the line that bisects the angle between the x-axis
and the y-axis. If we are in 3d, M is on the diagonal of a cube that
has a vertex at the origin, and so on. In 30d M is on the diagonal of
a hypercube in 30d. So, whatever the number of dimensions, M can
only move along a line through the origin, in one dimension. In
fact, as soon as Gervase told Tony one of the values  of  M, Tony
knew where to put the vector  because he knew that all the other 29
values  were  the  same.  For  this  reason  M has  always  only  one
degree of freedom. I'm sure that at this point you are dying to know
what D is. Wait a moment; first I have to tell you a couple of things
about vectors.
Vectors  have  some  peculiarities  that  affect  the  way  we  do  the
mathematical calculations.

The value of a vector is obtained by summing the squares of all of
its  elements  (if  you think  about  a  vector  in  a  2d plane  and the
Pythagorean theorem this will be obvious)

The addition and subtraction of two vectors is done by adding and
subtracting the corresponding elements of two vectors (we did this 
in  chapter  2  without  actually  knowing  that  we  were  doing
calculations  with  vectors;  we were  smarter  than  we thought  we
were).  Otherwise,  if  the  vectors  are  orthogonal,  the  sum of  the
vectors can be obtained simply by drawing the vector that joins the
two ends of the vectors (the tips of the two arrows) *.  

Therefore,
Y = M + D then D = Y – M. That is, D is the difference between
the individual observations and the average.

* Maybe some of you will remember that to add two vector arrows the so-
called parallelogram rule can be used. It takes just a moment of thought to 
realize that what is set out here is the same thing if we remember that a 
rectangle is a special parallelogram where the two diagonals are the same 
length.
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The value of D (the sum of the deviations from the mean squared)
is our old friend, the deviance. 

Now  M is  on the
bisector  of  the
angle between the
coordinate  axes,
so  let's  keep  it
there  as  shown in
the diagram; How
can  D move?  It
can  only  rotate
around  M like  a
wheel  around  an
axis.  It  can  only
move  in  a  plane
which  is  perpen-
dicular to M, that is, in 2d space, and with one degree of freedom
less than we started with. In general terms it has n-1 degrees of
freedom. I promised you that I would get there and here we are.
This is the reason why when you have to calculate the variance you
have to divide by n – 1. The reason is simple: to calculate the mean
(which we need to calculate the deviations from the mean) we have
already taken a degree of freedom and now we have only n-1 to
calculate  the  deviance  (and  thus  the  variance  and  the  standard
deviation). In fact, if Gervase had said to Tony the values of D, as
soon  as  he  reached  the  penultimate  value,  Tony,  a  skilled
mathematician, would have stopped him and said: 
" Do you want to bet that I can guess the last value?"
" It is easy. I know that the sum of all of the values of D (if they are
not squared) is zero (remember this from chapter 2), so I just need
to add up all the values  that you have said and see how far it is
from zero"
In general, if I know the mean of a sample and I know n-1 values I
can derive mathematically the n-th value, so this n-th value is not
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free to assume any value  that it  wants: the mean has "eaten" its
degree  of  freedom. This  happens because,  not  knowing the true
mean,  we  are  forced  to  use  an  estimate,  the  sample  mean  to
estimate the variance. 

But let’s go back to our pyramid ; Now let's consider the triangle Y,
P and E.
P stands  for  Prediction:  it  is  the  vector  with  the  most  probable
values of the 3 vectors G , A and B. The mean is the best estimate
(as we said), so it is also the most probable value, so P is made up
of the means of G , A and B. Here it is:

72,4 72,4 72,4 …[10 times] 69,1 69,1 69,1 …[10 times] 70,2 70,2
70,2…[10 times]

Y minus P gives us a vector with the deviation from the prediction.
It shows us how measurements vary as a result of what happens
within the 3 groups. It is sometimes called the error  E because it
indicates the error in our estimates. 

The triangle  below that,  bounded by  P ,  M and  T, tells  us  that
subtracting the  Mean from the  Prediction gives us  T,  that is the
vector  with the  contributions  of  each new recipe  to  the  melting
characteristics of the sweets. Usually it is called the effect of the
Treatment, or the variation between the groups.

So  our  pyramid  shows  us  how  we  can  break  down  the  total
deviance (and thus the total variance) into a deviation due to the
effect of the treatment  T and a deviation due to error, the random
component E.
All we need to do is to look at the triangle DTE. 

The  clever  idea  of  Sir  Ronald  A.  Fisher  (1890-  1962)  was  to
calculate the distribution of the statistical test obtained by dividing
the value of T by the value of E. In fact, if the contribution of the
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new recipe is  as  large as the random component  it  is  logical  to
assume that the new recipe does not add anything to the melting
characteristics of the sweets, while if  T is much bigger than E we
can  expect  to  have  found  something  interesting.  In  fact  before
calculating the ratio between the value of T and the value of E both
of these numbers need to be divided by the appropriate degrees of
freedom, because it is obvious that the number of observations in
each group and the number of groups is important, but it doesn’t
change the underlying logic.
This  test  takes  the  name  analysis  of  variance  or  ANalysis  Of
VAriance.  Almost always the distribution is called F for Fisher or
the Snedecor-Fisher distribution because Snedecor proposed some
improvements to Fisher’s original method.

Together with R let’s look at how things work in practice. First of
all we put together the vectors that we need. The measurements are
put all together in a single vector called Y.
 
> Y<- c( 89, 71, 76, 81, 75, 79, 60, 62, 70, 61,
+  72, 82, 65, 83, 50, 61, 83, 68, 52, 75, 79, 52,
+  80, 68, 61, 68, 74, 71, 76, 73)

Then you have to prepare a vector that " explains " to R who each
measurement  belongs  to.  We  will  call  it  A,  the  author  of  each
measurement.

A<-rep(c("0G","1A","2B"),each=10) 

As you probably guessed the function rep() helps us whenever we
need to produce vectors that are simply repeating something. The
use is pretty obvious, however, let me just remind you that for more
information all you need to do is to write ?Rep.
Unfortunately, R has a bad habit (nobody is perfect) in some cases
(when handling factors) of rearranging the names in alphabetical
order. For this reason I chose to put a number 0, 1, 2 before the
letter for each author's measurements.
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In any case, if we put A and Y side by side it is clear what is in A.

> cbind(Y,A)
      Y    A   
 [1,] "89" "0G"
 [2,] "71" "0G"
 [3,] "76" "0G"
 [4,] "81" "0G"
 [5,] "75" "0G"
 [6,] "79" "0G"
 [7,] "60" "0G"
 [8,] "62" "0G"
 [9,] "70" "0G"
[10,] "61" "0G"
[11,] "72" "1A"
[12,] "82" "1A"
[13,] "65" "1A"
[14,] "83" "1A"
[15,] "50" "1A"
[16,] "61" "1A"
[17,] "83" "1A"
[18,] "68" "1A"
[19,] "52" "1A"
[20,] "75" "1A"
[21,] "79" "2B"
[22,] "52" "2B"
[23,] "80" "2B"
[24,] "68" "2B"
[25,] "61" "2B"
[26,] "68" "2B"
[27,] "74" "2B"
[28,] "71" "2B"
[29,] "76" "2B"
[30,] "73" "2B"

To carry out an ANOVA R needs the classificatory variables (like A in our
case) to be transformed into something called a factor. We don’t have the
space here to explain in detail what a factor is, so just accept that 
A<-as.factor(A)      does what we need.
Now, to do the analysis of variance we use a function called aov().
The function has an unusual syntax that makes use of the special
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character ~ . Often this character is not present on the keyboard but
can be obtained (with a Windows PC) by pressing the Alt key and
typing the number 126 on the numeric keypad. Alternatively, refer
to the computer manual. The result of the function aov ( ) is slightly
strange. It is a list, which is something that we have already come
across  that  can  be  saved  in  a  variable  enabling  us  to  do  many
interesting things which I can’t go into now. What interests us is
what in the jargon is called the ANOVA table which you get simply
by applying the function  summary() to the result of the function
aov(). This is written below.

> summary(aov(Y~A))
            Df Sum Sq Mean Sq F value Pr(>F)
A            2   56.5   28.23   0.272  0.764
Residuals   27 2804.9  103.89  

So, we have a table with two rows: the first is the effect of A, which
in the origami example we had generically called  T.  The second
row is the residual which is also called the error E. 

Df are the degrees of freedom
Sum Sq is the sum of the squares (the deviance)
Mean Sq  is the variance  (Sum Sq / Df)
F value is the Fisher F (ratio of the 2 variances)
Pr(>F) the probability of being wrong by saying that A, G   

and B are different.

In our example the figure is about 76%. So there is not a significant
difference between the 3 recipes.  In fact, R has already calculated
everything, taking away all the excitement, but we can try to follow
the calculations with our pyramid. Given Y and A as set out above,
it is easy to generate M. 

M<-rep(mean(Y),30)

To get P we use the function tapply() which applies a function (in
this  case  the  average)  to  all  subgroups  that  can  be  found  in  Y
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according to the "rule"  A. It is very powerful and very useful , I
recommend studying it quietly. Guess how? Just write ?tapply . 

P<-tapply(Y,A,mean)

and it does all the calculations we need. Then
 
P<-rep(P,each=10)

which  repeats  each  value  10  times  (our  vectors  all  live  in  30
dimensional space, remember!). Then, as we have already seen, we
can  write  some  simple  calculations,  one  for  each  face  of  the
pyramid:

D<-Y-M
T<-P-M
E<-Y-P  

but also

E<-D-T

for  the  picky,  we  can  ask  R  to  check  that  the  two  ways  of
calculating  E are equivalent.  It is a bit like running up and then
down a pyramid.

(P-M)==(D-T)

But then

> sum(T^2)
[1] 56.46667 

and
> sum(E^2) 
[1] 2804.9

or 
> sum(D^2)-sum(T^2) 
[1] 2804.9
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Please compare them with the values in the ANOVA table.

At this point we have to calculate the degrees of freedom. You have
probably already noticed that as you add up the vectors, so you add
up the degrees of freedom: 

vector degrees of freedom in our case
Y n (number of observations)                30
M 1 1
D n-1 29
P k (number of treatments) 3
T k-1 2
E (n-1)-(k-1) 27

Then the value of F is obtained from the following:

> (56.46667/2)/(2804.9/27)
[1] 0.2717744

Again, please check the results in the ANOVA table .
As already mentioned, the calculation of the probability of finding
a given value of F by chance (an issue which applies to all  the
probability  distributions)  is  rather  complicated  (it  requires  the
solution of an integral)  ,  so we will  ask R to help us using the
function pf()

> pf(0.2718,2,27,lower.tail=FALSE)
[1] 0.7640668

The function takes as inputs the value of F and the two values  of
the degrees of freedom. I hope you remember the meaning of the
option  lower.tail=FALSE from  chapter  4.  In  this  case  it  is
equivalent to 

> 1-pf(0.2718,2,27)
[1] 0.7640668

And the extra-soft toffee?
Oh yes, I forgot. Gervase discovered it by chance. 
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Chapter 10
Something on Regression

You  may  remember  that  in  the  chapter  3  I  pointed  out  the
possibility of looking for an association between the measurements
of Nick Robinson’s little dog.
Below is a drawing of one of the dogs " unfolded".
Let’s consider the measurements Si and Tg.
I hope you kept the dogs that we used to calculate the median and
quartiles. If so, reopen them and measure Si and Tg for each sheet,
thus creating two vectors Si and Tg.

Now we can ask R to calculate the correlation coefficient (r), to see
if the two measurements are associated with each other.
We have  already said  that  the  correlation  coefficient  tends  to  1
when the variables are positively correlated (if one increases, the
other also increases), tends to -1 when the correlation is strong but
negative (if one increases the other decreases), and tends to 0 when
there is no correlation.

I've already taken the measurements of some dogs, that were made
using sheets of paper that were 95mm square. They are in the table.
This time I will use a different method to pass the data to R. So far
we have built vectors in the workspace of R with the command <-.
This is not a very convenient way to do it, especially when there is
a lot of data.  So I used a spreadsheet to do the data entry which I
saved in the tab-delimited "text" format, calling it dogs.txt.

At this  point you have to make sure that the file is in the same
folder in which you started R, or to determine that the one where
the file is located is R’s "working directory". How do we do that?
To  define  the  "working  directory"  (wd)  there  is  the  function
setwd() or you can use the command Change dir  ...  in the File
menu.
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For beginners , I think it is easier to use the function:

> getwd()

with which we find out what the current working directory is.  Then
we can just copy the file into that directory (folder). 

Having resolved the problem of the wd we run the command:
 
> dogs<-read.delim("dogs.txt")

This creates a special object in the workspace called a  dataframe,
(in our case it is named dogs) that contains all of our data, rather
like  a  large  table.  At  this  point  we  can  directly  use  the  four
variables in the table by referring to them with their names: 

dogs$N
dogs$Si
dog$Tg
dogs$H
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N Si H
1 73 52 31
2 71 52 26
3 79 60 26
4 78 59 22
5 87 50 12
6 70 55 36
7 76 57 26
8 79 57 21
9 76 57 25
10 79 56 23
11 73 52 32
12 81 57 13
13 80 55 20
14 71 54 34
15 70 51 34
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Si and  Tg are the two columns that interest us,  N is simply the
number of the dog, and we will talk about H shortly.

The command

> attach(dogs)

allows us to avoid writing the prefix dogs$ every time.

Now,  R  uses  the  function  cor()to  calculate  r.  Forgive  the
foolishness: we are using R to calculate r (it is an old joke – about
2000 years old [14]). Anyway, here it is: 

> cor(Si,Tg)
[1] 0.2395227

The value of the correlation coefficient is about 0:24, so the two
measurements  are  associated,  but  fairly  weakly.  This  is  logical;
there is no reason why those who do the first fold in a certain way
should then do the fifth fold in a way that depends on the first fold.
They are two "free" steps as we have already said, when speaking
about the fold in the chapter 3.*

But now let’s try to measure the length H of our little paper dog,
which is a measurement to do with the length of the tail of each

* In fact this is not quite true . I realized that there is some sort of 
relationship between Si and Tg. In particular,  if all the dogs are folded
by the same person, sometimes the aesthetic sense of the person leads 
him to choose a size and head shape that is not completely 
independent of the height of the dog. If you look at the plot of Tg and 
Si at page 92 it is clear that there is a single point with a very high Si 
and a very low Tg, whereas all of the other points tend to correlate 
(weakly) in a positive way .
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dog. As you can see, I put them into the spreadsheet and they are
already in our data frame, so it is easy to calculate the correlation.

> cor(Si,H)
[1] -0.9185351

Here, however, there seems to be an association: -0.9 is fairly close
to 1. Perhaps some of you have also understood why... But, wait a
minute; tell me later.

The fact is that, if the measures are associated, we can ask R to
look for a kind of "rule of association". In general, we are talking
about a model and the easiest model to find is the linear model: the
well-known function of a straight line. 

y=a+bx  

Well, I have written "well-known" to imitate some of the serious
mathematics textbooks. Maybe some of you are familiar with the
branch of mathematics which combines geometry and arithmetic in
a wonderfully elegant way. Maybe you could have some fun going
through Appendix C (don’t  forget  to  have some pieces of paper
handy) .

Anyway:
a  is  the  point  where  the  line
crosses the y-axis
b is the slope of the line.

Given  a  set  of  x  and  y  values
which  are  correlated,  it  is  not
difficult to estimate a and b. Get a
wooden board , draw a Cartesian
plane on it  and put  a  nail  where
each pair of x and y values intersect. Then hang a rubber band on
each nail. Then get a nice straight stick and thread it through all the
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bands, let go... and you're done! The stick represents the function of
the straight line [10] .

What is that you are saying? It is a bit complicated. Well then we’ll
have  to  ask  R  for  some  help,  using  the  function  lm().  This
function,  like  aov(),produces  a  result  that  becomes  more
interesting if we add in the function summary().

Here it is:

> summary(lm(Si~H))

Call:
lm(formula = Si ~ H)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.8295 -0.3732  0.1705  0.6705  3.1705 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 91.88336    1.94201  47.314 6.13e-16 ***
H           -0.61746    0.07371  -8.377 1.35e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
1

Residual standard error: 1.999 on 13 degrees of freedom
Multiple R-squared:  0.8437,    Adjusted R-squared:  0.8317 
F-statistic: 70.18 on 1 and 13 DF,  p-value: 1.346e-06

What a lot of stuff! Don’t worry; the column " Estimate" contains
the values that we are interested in.

Si≈91.9−0.6H

This is called the calculation (estimate) of the regression of y on x .

Let's stop to think for a moment. I seem to remember that someone
told me that it is logical that Si and H are related. In fact, looking at
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the piece of paper with the folds, we can see that Si is equal to L
(the  side  of  the  square  we started  with),  less  H divided  by the
square root of 2. Well done!
But then, given that the side of the square and the square root of 2
do not change we should be able to derive the parameters a and b.
In fact, all we need is a little algebra. We said that:

Si=L−H÷√2

 Therefore a=L and b=−1÷√(2)

Let’s check

In my case a=L=95 whereas we got 91.9

b should be

> -1/sqrt(2)
[1] -0.7071068

whereas we got – 0.6 
This is due to the mistakes I made when measuring with a ruler, the
imprecision in making the folds and to rounding errors. If you were
better than me with the folds and the measurements maybe you did
better, but if you got exactly L - 0.71 I know that you cheated.
 
Be  careful:  this  is  a  very  special  case,  created  specifically  for
educational purposes. In fact, here we are able to calculate the real
model  that  links  Si  with  H.  But  this  is  because  the  dogs  were
“created"  by  us,  following  geometrical  rules.  In  biometrics  this
hardly ever happens (unless you have God in your team). Typically,
all we can do, is to use regression to try to find the best estimate of
the model, namely the line, without ever knowing exactly the real
nature of the things.
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Let me explain this a little better. Remember the discussion of the
cloud (chapter 6). Here is the same thing, except that in the cloud
there are a and b, the parameters of  a straight line that, in a case
that is more unique than rare, we know exactly: 
 a =  95 mm, whereas b=−1÷√(2)=−0.71

And indeed, defining them as a and b showed a lack of precision on
my part. I should have used the corresponding Greek letters ( and
).
 
We  "sampled"  this  universe  by  building  the  dogs  and  taking
measurements, and got the two vectors X and Y (which in this case
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we called H and Si). We put this data into a machine (our friend R)
which provided estimates for and  , which we called a and b. In
fact, a and b are in the column called Estimate. But in the adjacent
column is our old friend: the standard error. Now given what we
know about the Gaussian (Chapter 4) it is very rare that the two
"real" parameters  (a and  b) and  a and b are separated by more
than 2 times the standard error. Indeed

> 91.88336+2*1.94201
[1] 95.76738

> -0.61746 - 0.07371*2
[1] -0.76488

It works!

All this is even more fun if we represent it graphically which is
simple with R. 

> plot(Tg,Si)
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> plot(H,Si)
> abline(lm(Si~H))

Let me draw your attention to the
second  graph  where  there  is  an
interesting thing. R drew the line
that has our parameters a and b.
As  you  can  see,  to  do  this  you
just  need the function  abline()
and  to  give  the  result  of  the
function lm() as an input.
The  logical  thing  would  be  to
save  the  result  of  lm()
somewhere and use the saved object as an argument for abline().
But , out of laziness, I prefer to get it to recalculate lm() each time.
Well it is R that does all the hard work!

Forgive me but, at this point, I have to reiterate another apparently
tedious thing. We started the chapter by talking about correlation
and we got on to talking about regression. Indeed often these things
go hand in hand so to speak, but , please, do not confuse them with
each  other.  They  are  two  different  instruments,  with  different
results.  Correlation  measures  the  association  between  two
variables, whereas regression seeks to estimate a model that links
them, irrespective of their degree of association.

Now, the method that we used is called the  least squares method
because it calculates the parameters of the particular line in which
the sum of the squares of the distances to all of our points is the
minimum possible. If you think about it a little it is the same thing
that  the  rubber  bands  did  on p.  88, by trying  to  be  as  short  as
possible.  Only one  thing  must  be  emphasised:  the  elastic  bands
should all be vertical,  because what we want to minimize is the
distance on the y axis.
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A bit of jargon. Note that y (in our case Si) is called the dependent
variable,  because  we  really  hope  that  it  depends  on  H  which
doubles  as  the  tail  of  the  dog,  which  we  call  the  independent
variable.
There is always a reason for Jargon. In this case we are working
with pieces of paper  and it  is  not very important,  but using our
imagination and thinking of Canis Origamicus, it is not very logical
to think that the height of a dog depends on the length of its tail.
Perhaps it would be better to say that it is the tail that depends on
the height of the dog? I don’t know, I don’t really know anything
about dogs (and those made of paper...),  but I would just like to
draw your attention to  the fact  that,  in  defining the model,  it  is
worth taking a moment to think about what to put "on x" and what
to put "on y". Things cannot be interchangeable and the result will
not; this is an other important difference between regression and
correlation (try it and see).

Perhaps some of you are dissatisfied because I haven’t explained to
you how R gets a and b.
This may be explained in different ways. Let’s return to our friends
the vectors.
Whereas  the  sum of  two  vectors  is  not  unlike  the  sum of  two
numbers, the product of, and the division of, two vectors requires
mathematical  operations that are a bit  more complex,  but  which
give very interesting results.
Now, before continuing, I have to introduce a new character:  the
matrix . Whereas a vector is a set of numbers placed in a row, a
matrix is a series of vectors "lined up", that is a table of numbers
arranged in rows and columns (maybe in pages, hyper cubes etc. A
matrix can also have more than 2 dimensions).

94



Let’s build a matrix X in this way:

> X
         H
 [1,] 1 31
 [2,] 1 26
 [3,] 1 26
 [4,] 1 22
 [5,] 1 12
 [6,] 1 36
 [7,] 1 26
 [8,] 1 21
 [9,] 1 25
[10,] 1 23
[11,] 1 32
[12,] 1 13
[13,] 1 20
[14,] 1 34
[15,] 1 34

with many ones  in  the  first  column and the  values  of  H in  the
second  column.  Then  if  then  we  "divide"  the  vector  Si by  the
matrix X , we get a and b. I told you that division with matrices is
rather strange...
In fact it is a bit like solving a group of equations, one for each row
of the matrix.

With R it works like this:

> X<-cbind(1,H)

> qr.solve(X,Si)
                    H 
91.8833605 -0.6174551 

Not all software is capable of dividing two matrices (or a vector
and a matrix), so it is possible that in some books you will find a
slightly  different  procedure.  First  calculate  the  inverse  of  the
product of the matrix X and its transpose; then multiply this matrix
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(the product of the transpose of X ) and Y. I know, it's a bit like a
tongue twister, and I haven’t even explained what the transpose of a
matrix is. But I can translate it into the language of R, in that for
the product of two matrices you use the function % * % . For the
transposition of a matrix (which is a bit like rotating the matrix on
its  main  diagonal)  the  function  t() can  be  used.   The function
solve() with a single input can be used to calculate the inverse of
a matrix.

> (solve(t(X) %*% X)) %*% (t(X) %*% Si)
        [,1]
  91.8833605
H -0.6174551

To calculate an inverse matrix it  is first necessary to calculate a
thing called the  determinant of the matrix. If you studied matrix
algebra you will  certainly have learnt  to  calculate  a  determinant
and, just as certainly you will have wondered what the purpose was
of  all  those  calculations.  Well  here  is  a  practical  application  of
matrix algebra. If you didn’t study matrix algebra it doesn’t matter;
as  I  told you generally all  of  the calculations can be left  to  the
computer (R). Or there are formulas which do not use the matrices,
which can be found in any book of statistics (see for example [8] in
the bibliography). 

Thank you for following all of this number crunching. Of course I
do  not  claim  to  have  explained  exhaustively  everything  about
regression, but perhaps to have explained what is useful, but above
all  I  hope  I  have  left  you  with  the  desire  to  study  this  really
fascinating topic in greater depth.
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Chapter 11.  And to finish...
A true story

Some time ago the manager of a big Italian company told me that a
number of years earlier he had wanted to optimize a certain stage of
production using Stepwise Regression. With Stepwise Regression it
is  possible  to  choose  from  among  many  independent  variables
those  that  are  most  important  to  predict  the  behaviour  of  a
dependent variable. 

Now you should know that "a number of years" before "some time
ago", although not exactly the time of the dinosaurs, was still a time
when calculating instruments were not as easy to use as they are
now. Computers were expensive objects weighing a few tons that
had to stay in air-conditioned areas, and that had to be programmed
with bundles of cardboard punch cards. In order to use a computer
you had to be authorized to the required “machine time”, and above
all it was not easy to find software suitable to do calculations. So
my  partner  decided  it  would  be  more  practical  to  do  the
calculations "by hand"; that is to say, using calculating machines
(these were already in use, as were washing machines the internal
combustion engine and bicycles). He organized two teams to work
in parallel on the problem in hand.

After two weeks of working on calculations both teams reached a
result, but the results were different!
Discouraged the manager decided that the plant was fine with the
method  they  had  used  up  to  that  point,  and  that  Stepwise
Regression could stay where it was in the statistics book.

Today  it  is  quite  easy  to  find  a  program to  calculate  Stepwise
Regression. It can be run on any PC and the result is available in
less than a second. However, with this huge capacity for calculation
we sometimes run the risk of not having time to understand what
the computer is doing. Here, in these few pages I did not intend to
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convince  you  that  folding  paper  was  the  most  practical  way to
solve the problems of statistics, but I wanted to help you to become
acquainted with some concepts of statistics.  At the same time, I
hoped to get you to feel at least a little of the fun I got from folding
paper and making drawings.

If you managed to get to the end I thank you for your patience and
for the attention that you gave me. I hope that some ideas will be
evident for you, 
I hope that some ideas will be clear to you, I recap them here: 

• when  measuring  something  not  only  is  data  position
important, but also data dispersion

• quality of measurement is important (repeatability?)
• pay attention to the scales of graphs
• describing data is different from making inference
• when making inference remember the assumptions
• association is not a cause-effect relationship
• models are not reality
• it  is important to make a distinction between independent

events  and  events  with  conditional  probability  (see
appendix B)

I take this opportunity to thank Laura Antolini, Guido Pacchetti,
Piergiorgio Duca, Giorgio, Alfredo e Chiara Cigada, Carlo Alberto
Spinicci;  Mauro  Sette  and  Remo  Cacciafesta  who  gave  me
encouragement and valuable advice; Valeria Lovato who helped me
with some drawings; and I am especially grateful to Anna Maria
Viganò for graphics. But above all I have to thank my wife Flavia
and my daughters Irene and Anna who have endured months with
the house full of pieces of paper and were forced to listen countless
times to ideas, phrases, thoughts and... were patient. Obviously I
am  responsible for any errors or inaccuracies and I apologize in
advance for these.
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Appendix A
For origamists

In this book I have limited myself to very simple paper models, on
the assumption that the reader knows nothing about origami . It is
possible  that  more  experienced  origamists  are  somewhat
disappointed by some of the models which are a bit  basic.  So I
thought of referring to some folds that are a little bit more complex,
but  that  can be used in  the same way as those presented in  the
book.  

The late Thoki Yenn in the booklet mentioned in the bibliography
[3],  presented  a  fold  to  make  the  lopsided  tetrahedron  used  in
chapter 9 with a sheet of paper with the format 2×1 .

In  this  way,  noted  Thoki,  a  sixth  of  a  cube  comes  from half  a
square!
His tetrahedron is more beautiful than mine because it has all of the
faces (including the one at the bottom) .
Thoki was an extraordinary character. After his death the British
Origami Society decided to host on its website the pages of the web
site of Thoki, which risked being dismantled. The site also contains
a scan of the quoted text [3]. 

http://www.britishorigami.info/academic/thok/index.html

In Kasahara’s book, that has already been mentioned [1], there is an
explanation of different models for a cube with each side equal to
2÷4  (like  the  masu),  that  are  capable  of  being  made  with  2

sheets of paper. In this way you can make histograms that combine
cubes and masu. Below there is a diagram. 

If you like the origami (and you can understand italian) but don’t
know Centro Diffusione Origami, contact them immediately; They
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have beautiful paper and lots of books, including foreign books, at
a good price .
www.origami-cdo.it
If you don'understand italian language, don't worry, I'm shure that
in your country there is a similar society.
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Appendix B 
Probability

In  fact  all  of  statistics  derives  from  the  theory  of  probability.
Probably for  this  reason,  most  manuals on statistics start  with a
large section on this branch of mathematics.
The fact is that the theory of probability is far from intuitive, so in
this booklet I thought you would be happy to avoid the problem up
to this point. But, not wishing to adopt the tactics of an ostrich, I
would now like to try to introduce something I wrote some time
ago,  to  see  if  origami  can  help  us  understand  something  about
probability.

Probability as an area

Billy  Ball  is  a  strange  child.  He  spends  his  afternoons  in  the
courtyard playing with a ball. He throws it up in the air and lets it
fall to the ground, then picks it up and throws it into the air again.
He is capable of spending hours and hours in the courtyard with his
ball, he enjoys it so much.
One day, as were watching Billy play, Professor Mumble Numble
pointed out a curious thing to me.
Look, he said, Billy does not have the strength to throw the ball
over the surrounding walls, so every time the ball is thrown, sooner
or  later  it  falls  in  the  courtyard  which,  by the way,  is  perfectly
square. Now if, unbeknownst to Billy, I define an area within the
square, I could bet with you how often the ball falls inside that area
and how many times it  doesn’t.  Of course,  in  the  long run,  the
number of times that I win will just be a function of the relationship
between the chosen area and the total area of the yard (or between
the  chosen  area  and  its  complement).  Accordingly,  any  punter,
including you, would only agree to bet based on the size of chosen
area.  For  example,  if  the  area  was  one-third  of  the  size  of  the
courtyard, you would only bet on the basis of 2 against 1. This is
very similar to the subjectivist definition of probability. However,
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please note that I could describe this series of events as a ratio of
frequencies;  how many times  the ball  falls  into  the chosen area
divided by the total  number of throws. This is  analogous to the
frequentist  definition  of  probability.  At  this  point,  continues
Mumble  Numble,  I  ask  myself  if  the  Billy-courtyard-ball
phenomena   follows  the  axioms  of  Kolmogorov,  in  that  it  is
possible   to  describe  the  probability  as  the  ratio  between  areas.
Perhaps this is a trivial thing, but nonetheless fun.

This  brief  chat  with  Professor  Mumble  Numble  brought  my
thoughts back to my old love: origami.
The  classic  piece  of  origami  paper  is  square  (like  Billy’s
courtyard),  so I  thought  we could forget  the courtyard,  ball  and
Billy (maybe he could be taught another game!)  and describe some
aspects of the theory of probability by folding paper. 

So what are the classical axioms of Kolmogorov?

In terms of probability it means a measure in event space with the
following characteristics:
a) it is a positive number less than or equal to 1
b) the probability of a certain event is equal to 1
c) the probability that one or other of two events happens is equal
to the sum of the two probabilities, if the two events are mutually
exclusive.

In the world of origami for the probability of an event we mean the
area of part of a square of origami paper. 
a) the area is measured as the ratio (or percentage) of the total area
of the square
b)  the  probability  of  a  certain  event  corresponds  to  the  whole
square
c) the probabilities are added by adding the areas, provided that the
areas do not overlap. 
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Let us look at some examples.
The toss  of  a  coin  is  represented  by a  sheet  with a  fold  in  the
middle.  If  the  coin  is  not  biased  the  2  areas  corresponding  to
"heads" (T in italian “Testa” ) and "tails" (C in italian “Croce”)
both have a value of 0.5. According to the standard notation:
P(T)=P(C )=0.5

If we flip the coin a second time we
just have to make a second fold.  The
event  space  represents  four  possible
and equally likely events with P=0.25.
Please note that the order of the letters
within  the  areas  reflects  the  order  of
the tosses. 

Up to this point it is pretty dull, but the
last fold can help us unravel a classic
problem  of  probability  due  to  its
apparently paradoxical nature: the problem of the two brothers. 

I meet a lady who tells me that she
has two children, one of  which we
know  is   female.  What  is  the
probability that the other is male?
 
If you answered 50% I am sorry, but
you are wrong.  Having 2 children is
represented in the same way as two
tosses of a coin. So take the sheet we
used before and where there is  a  T
put M for male and where it says C
put F for female. Now we know that
one of the children is a girl so the event space that interests us is the
shaded area. There are 3 events of equal probability. It is easy to

103



see that in 2 portions out of 3 one of the children is male, so the
result of the problem is 2/3 ≈ 0.66.

This  is  why  the  outline  of  the
problem  can  be  misleading.  When
we hear that the lady has a daughter
we  "infer"  (incorrectly)  that  this  is
the  first-born,  in  which  case  the
event space becomes the one drawn
here (the order of the letters reflects
the order of birth of the children) and
the probability that the second child
is  male,  given  that  the  first  is  a
daughter,  is  0.5 as you said before.

With  the  standard  notation  P(M|F)  =  0.5.  It  is  counter  intuitive
simply due to a failure to understand the problem!

Another game: A probability value that is well known to all those
who deal with statistics is P = 0.05, often for   errors (remember
chapter 7). To see it lets start by folding a sheet of paper in half and
then in half again, as in Figure 1. 
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Then we make a fold as shown in figure 2. 
Now, the triangle ABC is a right angle triangle and, if you think for
a moment, you will notice that the 2 sides are in the proportions  3
to  4,  so  the  hypotenuse  AC is  equal  to  5  according  to  the
Pythagorean theorem. 

Now we have to make a fold perpendicular
to the fold AC (Figure 3) that meets vertex
B. It is not difficult to make a 90° angle,
just make sure , when you make the fold ,
that point C falls precisely along the fold
AD. We get  another  triangle  ADB. ADB
and  ABC  are  similar  triangles  (Do  you
know how to prove it? If not you can find
out at the end of Appendix D), but ADB is
smaller and the hypotenuse coincides with
the side of the original square. So ¼ of the side AD is equal to 1/5
of the side of the original square (AB).

 Then we fold AD in half (Figure 4).
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then fold along the bisector of the angle
CAB so that the side AB lines up with the
line AC and point E is on the side of the
square,  as
shown  in
figure 5. 
To do this  we
have  to  fold
the  paper
under  at  point

E (in origami this is called a “mountain”
fold and is  indicated by a row of dots
and  lines,  to  distinguish  it  from  a
“valley”  fold  which  is  indicated  by  a
series of dashes). 

The result should be as shown in  figure 7.

Now unfold the sheet of paper. We positioned AE ( = ½ AD ) on
AB creating AF=AE. Then ½ of AF = 1/5 of AB. Now let’s do one
last fold, taking point A to point F. The result is the shaded area
which is our P = 0.05.
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1
5
×

1
4
=

1
20

=0.05

You say that you did not expect it to be
so big? Neither did I, the first time, but
I  can assure  you that  it  is  correct.  So

remember that accepting an α error of 5% is not such a small risk.
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In the book "Origami Omnibus" referred to in  note 2,  Kasahara
tells us that if we start from figure 2 of the previous diagram and
add a fold as in figure 2b we get a very easy way to divide the side
of a square into three. In fact, the two folds which pass through
points X and Y as shown in fig 3b divide the square exactly into
three. 

 

At  this  point,  ignoring  the  construction  folds  and  taking  into
consideration only the folds in figure 4b we have a square divided
into 6 equal parts.  For the reasons mentioned earlier this represents
the event space of throwing a dice. If in addition to throwing the
dice we toss a coin the event space becomes that shown in Figure
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5b.  This  figure  allows  us  to  summarize  the  effects  of  different
operations on probability. 

The sum
This  is  equivalent  to  adding  areas,
and  is  analogous  to  the  logical
operator  "or"  and the union of  sets.
For example: what is the probability
of having a tail (=C remember that in
italian is “Croce”) or a 5? 

P (C∪5)=P (C∨5)=P(C)+P(5)−P(C∧5)

Please  note  that  if  you  do not  take  off  P(C and  5),  that  is  the
probability of simultaneously having a tail and a 5, the area marked
5C in figure 5b will be counted twice.

So P(C∪5)=
1
2
+

1
6
−

1
12

=
7
12

≈0.583

The product
This  is  equivalent  to  adding  folds
(dividing  areas).  It  is  analogous to  the
logical  operator  "and"  and  the
intersection of sets.  For example: what
is  the  likelihood  of  having  a  tail  and
simultaneously a 5?
 

109



P (C5)=P (C∩5)=P (C∧5)=P (C)×P (5)

P (C∩5)=
1
2
×

1
6
=

1
12

≈0.083

In simple terms you fold  in half (½) the area of P(5).

Be careful. This applies only if the two events (coin and dice) are
independent. In fact I could have written:
P (C5) = P (C) x  P(5|C) which says that the probability of having a
5 and a tail simultaneously is equal to the probability of having a
tail multiplied by the probability of having a 5 given a tail. But as
the result of a coin toss does not depend in any way on the outcome
of the dice then P (5) = P (5|C) and what we have written above is
correct. 

But this is not always the case..

So let's deal with a problem of conditional probability. In this case
a useful tool is the so-called Bayes theorem, which can be written
as:

P( A∣B)=
P (B∣A)P (A)

P(B)

And is read: the probability of A given B is equal to the probability
of B given A multiplied by the probability of A and divided by the
probability of B.
I know this sounds far-fetched, but I want to see if our origami can
help us to understand the meaning of this really important theorem. 
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Let’s prepare a sheet folded into 12,
as  in  Figure 5b,  but  leaving all  of
the boxes blank. 

Now let’s try to calculate P(A|B).
Assuming  that  P(B|A)  is  equal  to
1/4  and  P(A)  =  1/3  it  is  easy.  I
deliberately  chose  numbers  that
were “easy to calculate”. 

1
4
×

1
3
=

1
12
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This is the term above the fraction
line.  Now we have to  divide  by
the probability of B. I  hope you
remember that to divide fractions
it is necessary to multiply one by
the  inverse  of  the  other.  Let’s
make two hypotheses. 

If  P(B) =1/9 we have:

 P( A∣B)=
1
12

×
9
1
=

3
4

But be careful. If event B was more
probable, for example,  P(B)=1/2,

we have:   P (A∣B)=
1
12

×
2
1
=

1
6
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This tells us that the probability of A given B rises with an increase
in the probability of A and the probability of B given A, but drops
with an increase in the probability of B.
I can imagine that some of you do not find this astonishing, so let
me illustrate it with an anecdote. 

During  my youth  a  tragic  social  problem was  heroin  addiction,
which I imagine you have heard of.
Then some well-meaning people, having noticed that the majority
of heroin users were previously consumers of cannabis derivatives
(hashish  or  marijuana),  concluded  that  the  "cause"  of  heroin
addiction  was  linked  to  the  consumption  of  cannabis,  thereby
demonstrating a delightful ignorance of Bayes' theorem.

The probability of becoming addicted to heroin after  consuming
cannabis = P (A|B).
It is certainly linked to the probability of finding a consumer of
cannabis among heroin users = P (B|A)
But we have to multiply this probability by the incidence of heroin
use = P (A)
And above all  we have to  divide  the result  by the incidence  of
cannabis use P (B)

So, if our sample is from an area where the use of cannabis is rare,
then the observation that the consumption of cannabis predisposes
someone to  heroin use is  significant,  but if  in  our sample many
people consume cannabis, then our conclusion (finding that many
cannabis  users  among  heroin  users  indicates  that  cannabis  use
"predisposes" someone to heroin use) is wrong.
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Appendix C
Bits of analysis

Renee Descartes  (1596 1650),  also  known as  Cartesius,  had the
idea of looking for a link between arithmetic and geometry, in a
simple and ingenious way.
If we draw two axes perpendicular to one another on a plane, and
along each axis we put real numbers we get a fun way to represent
the possible links between two variables. In this diagram, which
traditionally goes by the name of a Cartesian plane, the horizontal
axis is generally defined as the axis of the x variable (or x-axis) and
the vertical axis is that of the y variable (or y-axis). The intersection
between the two axes has the value 0.0 and is referred to as the
origin. So the mathematical relationships between x and y come to
be drawn rather elegantly on a plane.

It is very easy to represent linear relationships such as 

y=a+b x

In this function a and b are the parameters of a straight line and, in
particular:
a indicates the point at which the line crosses the y-axis
b indicates the slope of the line.

I think it is easier to give a few examples. In chapter 3 we produced
a couple of graphs of variables that were related to each other. In
the  first  example  y  was  obtained  by increasing  x  by  20% and
adding 7. This corresponds to the function

y=1.2x+7

R can easily help us to represent it in the Cartesian plane with the
command below. In fact the first line only serves to draw a "blank"
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Cartesian plane ranging from 0 to 20 for both the x-axis and the y-
axis, while the function is plotted by abline().
plot(x=1,y=1,xlim=c(0,20),ylim=c(0,20),type="n")
abline(7,1.2)

The third example is even more
interesting. Here we have added
uncertainty  to  the  function  y,
distributed  according  to  a
Gaussian  with  mean  =  0  and
standard deviation = 0.5.

So  if  we  execute  these  two
commands 

abline(8,1.2,lty=2)
abline(6,1.2,lty=2)

R adds  to  the  chart  2  straight
lines,  with  the  same slope  but
with intercepts at:

7+0.5×2=8

and

7−0.5×2=6
.

This defines the area in which
we expect to find about 95% of
the observations (mean ±2SD). 

I hope you have to hand a few squares of paper, no matter what
size. The length of a side will be denoted by the letter l for length.
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We determine that the angle at the bottom left of our sheet is the
origin. Here and on the next page are some examples of how to fold
a few simple linear functions and their parameters.
Below  is  an  example  of  how  to  fold  an  A4  sheet  of  paper  to
represent the functions described at the end of chapter 3. That is to

say the line 
y=1.2x+7

to which we added a Gaussian error with

sd = 0.5 using the function RNorm ( ).
As you can see, we have to represent the results of the calculations:
a  lot  of  numbers,  ruler,  measurements  ...  all  for  three  miserable
folds.
Besides not everything can be solved only with the origami. It is
better  to  use  R  and
abline().
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Appendix D
Formulas

Mean: The sum from  i = 1 to n (= first to last) of the n elements of
x, divided by n 

x=(∑
i=1

n

xi)÷n

Range: The maximum value minus the minimum value
R=xMax−x Min

Deviance:  The  sum from i  =  1  to  n  of  the  squared  differences
between the n values of x and the mean of x. 

D=∑
i=1

n

x−xi 
2

Variance: Deviance divided by the degrees of freedom
S2

=D÷n−1

or

S2
=∑

i=1

n

x−xi 
2÷n−1

Standard deviation: The square root of the variance
S=S2

or

S=∑i=1

n

 x− xi 
2÷n−1
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Standard error: The standard deviation divided by the square root
of n
ES=S÷n

Covariance

Cov ( x , y)=∑
i=1

N (x i− x̄)( y i− ȳ)

N −1

Correlation Coefficient 

r=
Cov (x , y)
S (x )S ( y )

The covariance of x and y divided by the product of their variance

Gaussian

f x=
1

 2
e

−[ x−
2

2 2 ]

Student’s  t  for  unpaired  data:   The  difference  between  the  two
means divided by the standard error of the difference, that is, the
square root of the sum of the 2 variances divided by n. NB it is
possible that n1≠n2

t=
 x1− x2

 s1
2

n1


s2

2

n2

df =n1+n2−2
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Student’s t for paired data: The average of the differences between
the two samples divided by the standard error of those differences.
NB n1=n2=n

t=
∑ x1−x2÷n

s2
÷n

df =n−1

The answer

It is not difficult. ABC and ADB are both
right  angled  triangles,  so  they  have  an
angle that is equal. But also angle DAB is
equal, therefore the third angle must also
be equal, because in all triangles the sum
of the angles is equal to 180 °. From this it
is also the case that DCB is similar to the
first 2 triangles.

120



Bibliography (with comments?)

[1] Origami Omnibus by Kuniko Kasahara is published by Japan
Publications  in  Tokyo.  It  is  a  beautiful  book  written  in  English
containing a lot of food for thought as well as many fun models.

[2] For those who want to start origami I suggest a book also by
Kuniko Kasahara, Origami Facile, ed. il Castello, 1978 Milano.

[3] 13 Thoki Yenn Orikata is a short, but very stimulating book,
published  by  the  British  Origami  Society
(www.britishorigami.org.uk/)  in  April  1985.  It  was  reprinted  in
1987 in A4 format. It can be bought from BOS.

[4]  A nice  book in  relation  to  origami  and geometry is  that  by
Tomoko Fuse: Origami Modulare, il Castello, 1988 Milano.

[5]  Super  quick  origami  animals  by  Nick  Robinson,  Sterling
Publisher Co. Inc (New York 2002) brings together many folds of
animals that are delightful in their simplicity.

[6]  Luigi  Pirandello,  Six  characters  in  search  of  an  author  in
“Maschere Nude”; various editors, for example. Garzanti.

[7] In the book by Box,  Hunter  and Hunter  called Statistics for
Experimenters ed John Wiley & Sons 1978 New York; you can find
a more formal treatment of the geometrical model of the ANOVA.

[8] There are many books available for those who want to study
statistics seriously.  To choose one that deals more seriously with
the subjects I have played with in this book I would pick the book
by  Lamberto.Soliani  that  you  can  find  free  on  the  internet  at
http://www.dsa.unipr.it/soliani/soliani.html.  It  is  very  nice  and
comprehensive.

121



[9] The objective of this book is to make you more familiar with
some statistical concepts as well as to learn to interpret the results
of statistical analysis. On this subject there is a nice introductory
book  written  by  G.Gigerenzer:  Quando  i  numeri  ingannano.
Imparare a vivere con l’incertezza. Raffaello Cortina Editore,  2002
Milano.

[10] The idea of using a wooden stick, nails and rubber bands to
create a linear regression was not mine, but comes from an article
published several  years  ago in  the journal  “Le Scienze” N.  204
August 1985 on page 112 in the section (Ri)creazioni al calcolatore
by A.K.Dewdney.  The  article  is  called  “Congegni  analogici  che
risolvono  problemi  di  varia  natura  e  sollevano  un  sacco  di
domande”.

[11]   Bland  J.M.  Altman  D.G.  (1986).  Statistical  Methods  for
Assessing  Agreement  between  two  Methods  of  Clinical
Measurement Lancet i: 307-310

[12] Shrout P.E. Fleiss J.L. (1979). Intraclass Correlations: Uses in
Assessing Rater Reliability
Psychological Bulletin 86, 2; 420- 428

[13]  Marubini  E.  Pizzamiglio  S  Verderio  P  (2005).  Agreement
between observers: Its measure on a quantitative scale
The International Journal of Biological Markers 20;1, 73-78

[14]  In Petronius  Arbiter’s  Satyricon (First  century AD ) and in
particular in Trimalchio’s dinner, it was considered funny to give
the slave who had to cut the meat , the name "Cut" . In this way, the
host could make the elegant (?) joke: "cut, Cut!" 

122


	ORIGANOVA
	Contents
	Chapter 3
	Measures of position, dispersion and association

